Targeted Neuromodulation by Nanosecond Pulsed Electric Fields

纳秒脉冲电场的靶向神经调节

基本信息

  • 批准号:
    10515459
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Nanosecond pulsed electric field (nsPEF) is a new modality for neuromodulation, with unique capabilities qualitatively different from the conventional electrostimulation. The potential benefits of nsPEF include but are not limited to prolonged stimulation with little or no electrochemical side effects; excitation at lower thresholds; selectivity based on cell charging time constant; the capability of choosing between stimulation, inhibition, and ablation; and achieving these effects non-invasively, either for outpatient deep brain stimulation or for tumor ablation. The primary effect of nsPEF is a rapid build-up of cell membrane potential (MP). Real-time measurements of MP kinetics are a key to predicting the outcomes of nsPEF stimulation. They are also a key to understanding bipolar cancellation, a unique feature that enables interference targeting of nsPEF for non-invasive neuromodulation. However, membrane charging by nsPEF occurs on a nanosecond time scale, much faster than could be resolved by the existing electrophysiological and imaging methods. We have addressed this challenge by implementing strobe pulsed laser microscopy for MP imaging with better than 50 ns accuracy. In this one-of-a-kind set-up, cells loaded with a fast voltage-sensitive fluorescence dye are exposed to high-power momentary laser flashes (5 kW, 6 ns). The flashes are dynamically synchronized with nsPEF stimulation of target cells. Photos of fluorescence taken at different times during and after nsPEF show the real-time dynamics of MP changes and how these changes culminate in downstream effects, such as opening of voltage gated ion channels, initiation of action potentials, and nanoelectroporation. We will employ this all-new set-up for understanding fine mechanisms and principles how neurons respond to the nanosecond electric stress. We will characterize nsPEF parameters needed to evoke the desired neuromodulation effect and tune the interference targeting protocols to achieve this effect at a distance from stimulating electrodes. We will perform finite element modeling of the electric field thresholds and use our in vitro results to define the feasibility and nsPEF requirements for non-invasive deep brain stimulation. This project will generate new basic knowledge of neuronal function, including nanosecond-scale biophysics of the cell membrane and ion channels. We will systematically characterize nsPEF neuromodulation effects and link them to dielectric and physiological properties of neurons and to nsPEF stimulation parameters. This in vitro project will utilize R21 “high risk, high reward” concept to collect mechanistic and quantitative data necessary for animal and human studies of nsPEF neuromodulation.
纳秒脉冲电场(nsPEF)是一种新的神经调节方式,具有独特的功能

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei G Pakhomov其他文献

Andrei G Pakhomov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei G Pakhomov', 18)}}的其他基金

Next Generation Temporal Interference Stimulation for Non-Invasive Neuromodulation
用于非侵入性神经调节的下一代时间干扰刺激
  • 批准号:
    10615485
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
  • 批准号:
    10669767
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
  • 批准号:
    8941895
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
  • 批准号:
    9278268
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
  • 批准号:
    8636788
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
  • 批准号:
    8811947
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
  • 批准号:
    8099680
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
  • 批准号:
    7984696
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
  • 批准号:
    8500364
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
  • 批准号:
    8298579
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 24万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了