Project C: Neural basis of causal inference in continuous navigation
项目 C:连续导航中因果推理的神经基础
基本信息
- 批准号:10615056
- 负责人:
- 金额:$ 78.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Animal BehaviorAnimalsAreaBehaviorBehavior monitoringBehavioralBehavioral ModelBeliefBrainBrain regionChemicalsContralateralDataDecision MakingDimensionsDorsalElectrodesElectrophysiology (science)EventFeedbackFirefliesGoalsJoystickLaboratoriesLinkLiquid substanceLocationMacacaMapsMedialMemoryModelingMonkeysMotionMusMuscimolNeuronsParietalPatternPerceptionPopulationProcessReportingRetinaRewardsSamplingSensorySignal TransductionSpecific qualifier valueSpeedStructureTestingTimeTrackball Device ComponentTrainingUpdateVisual Perceptioncomputer frameworkexperimental studyextrastriate visual cortexneuralneural patterningneurophysiologyneurotransmissionnovelobject motionoptic flowoptogeneticssensory inputtheoriestoolvirtual reality
项目摘要
Project Summary
When sensory inputs are ambiguous, the brain builds an internal model to infer which events in the world
caused this pattern of sensory activity. This process, called causal inference, provides a unifying framework for
understanding how neural signals that represent beliefs about the structure of the world interact with incoming
sensory signals to drive perception-action loops. This proposal focuses on perceptual interactions among
object motion, object depth, and an animal's self-motion through the world, as a particular moving pattern of
neural activity on the retina can be generated by many combinations of object motion in the world and self-
motion. The overall hypothesis is that parietal and prefrontal neurons infer whether an object moves in the
world, and that these signals flow through feedback projections to update task-relevant representations in
extrastriate visual cortex. The goal of this project is to study causal inference in dynamic tasks, in which an
animal's internal model of the world changes continuously. In a virtual reality navigation task in monkeys and
mice, these experiments will explore brain computation and multi-area interactions in the naturalistic setting of
continuous action and active sensing, as well as dynamic on-line inference about latent, task-relevant variables
related to the internal model. This project will develop a causal inference version of a dynamic navigation task
already in use in the Angelaki laboratory and then use population recordings and causal neural manipulations
to test and refine the dynamic model developed by the theory team in Project A. The continuous-time latent
variables of this model will be fitted to monkey and mouse behavioral data to reveal each animal's beliefs about
the state of the world and interacting task-relevant variables, and to generate novel hypotheses about the
neural dynamics. Using multi-electrode recordings and chemical and optogenetic manipulations, this project
will test these hypotheses in four mutually interconnected monkey brain areas involved in visual perception,
navigation, memory, and decision-making: parietal area 7a, prefrontal area 8aV, and extrastriate visual cortical
areas MSTd (dorsal medial superior temporal) and MT (middle temporal). Finally, neural activity will be
mapped throughout the mouse brain, with an emphasis on subcortical structures, using parallel recordings with
Neuropixels probes for hypothesis-free identification of other areas that are modulated by this dynamic task,
which will also serve to generalize the findings across species. Based on these findings, additional macaque
brain regions will be targeted for recording and manipulation experiments as needed. Collectively, these
experiments will rigorously test the computational framework of dynamic causal inference across species and
brain areas. When compared with the complementary findings from trial-based tasks in Project B, successful
completion of these experiments is expected to uncover general principles of the function of causal inference
processes and top-down feedback connections during naturalistic and dynamically fluid behavior.
项目摘要
当感觉输入模棱两可时,大脑会建立一个内部模型来推断世界上哪些事件
引起这种感觉活动的模式。这个过程称为因果推理,为
了解代表世界结构信念的神经信号如何与传入互动
感官信号驱动感知循环。该提案重点是之间的感知互动
物体运动,对象深度和动物在世界范围内的自我运动,作为一种特定的运动模式
视网膜上的神经活动可以通过世界上的许多物体运动和自我组合来产生
运动。总体假设是顶叶和额叶神经元推断物体是否在
世界,这些信号通过反馈预测流动以更新与任务相关的表示形式
外部视觉皮层。该项目的目的是研究动态任务中的因果推断,其中
动物的世界内部模型不断变化。在猴子和
小鼠,这些实验将在自然主义环境中探索大脑计算和多面积相互作用
连续动作和主动感应,以及对潜在任务与任务变量的动态推断
与内部模型有关。该项目将开发动态导航任务的因果推理版本
已经在Angelaki实验室中使用,然后使用人口记录和因果神经操纵
测试和完善理论团队在项目A中开发的动态模型
该模型的变量将适合猴子和鼠标行为数据,以揭示每种动物对
世界的状态和与任务相关的变量,并产生有关
神经动力学。使用多电极记录以及化学和光学遗传操作,该项目
将在参与视觉感知的四个相互关联的猴子大脑区域中检验这些假设,
导航,记忆和决策:顶区域7A,前额叶区域8av和室外视觉皮质
MSTD区域(背侧上部颞上)和MT(中间时间)。最后,神经活动将是
在整个小鼠大脑中映射,强调皮层结构,并使用与
神经质质探针,用于对通过此动态任务调节的其他领域的假设识别,
这也将有助于跨物种的发现。根据这些发现,其他猕猴
大脑区域将针对根据需要进行记录和操纵实验。总的来说,这些
实验将严格测试跨物种和
大脑区域。与项目B中基于试用任务的补充发现相比,成功
这些实验的完成有望揭示因果推断功能的一般原则
自然主义和动态流体行为期间的过程和自上而下的反馈连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dora Angelaki其他文献
Dora Angelaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dora Angelaki', 18)}}的其他基金
Computational dynamics in neural populations of freely foraging vs. restrained monkeys
自由觅食与受限制猴子神经群体的计算动力学
- 批准号:
10447347 - 财政年份:2022
- 资助金额:
$ 78.48万 - 项目类别:
Project C: Neural basis of causal inference in continuous navigation
项目 C:连续导航中因果推理的神经基础
- 批准号:
10225405 - 财政年份:2020
- 资助金额:
$ 78.48万 - 项目类别:
Project C: Neural basis of causal inference in continuous navigation
项目 C:连续导航中因果推理的神经基础
- 批准号:
10400148 - 财政年份:2020
- 资助金额:
$ 78.48万 - 项目类别:
Inertial and multisensory influences on entorhinal grid cells
惯性和多感官对内嗅网格细胞的影响
- 批准号:
9163935 - 财政年份:2016
- 资助金额:
$ 78.48万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
使用三代测序技术研究线粒体DNA非编码区域对其DNA复制和转录的调控
- 批准号:31701089
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 78.48万 - 项目类别:
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 78.48万 - 项目类别:
Corticothalamic circuits mediating behavioral adaptations to unexpected reward omission
皮质丘脑回路介导对意外奖励遗漏的行为适应
- 批准号:
10734683 - 财政年份:2023
- 资助金额:
$ 78.48万 - 项目类别:
Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
- 批准号:
10723977 - 财政年份:2023
- 资助金额:
$ 78.48万 - 项目类别: