Machine Learning for Precision Treatments in Schizophrenia
机器学习用于精神分裂症的精准治疗
基本信息
- 批准号:10591784
- 负责人:
- 金额:$ 19.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-05 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAntipsychotic AgentsAnxietyCharacteristicsClinicalClinical DataClinical ResearchClinical TreatmentClinical TrialsCodeCognitionCombined Modality TherapyCommunity PracticeComplexConsensusDataData ScienceData SetDatabasesDemographic FactorsDiabetes MellitusDiagnosisDiagnosticDiagnostic testsDoseEarly treatmentEffectivenessElectronic Health RecordEmergency department visitEquilibriumEvidence based practiceGoalsHospitalsImpairmentIncidenceIndividualInformaticsInternationalK-Series Research Career ProgramsKnowledgeLaboratoriesMachine LearningMedicaidMedicalMental DepressionMental disordersMethodsModelingNew YorkOutcomePatient-Focused OutcomesPatientsPatternPharmaceutical PreparationsPharmacoepidemiologyPopulationPrecision therapeuticsPresbyterian ChurchProceduresPsychiatryRandomizedRandomized Clinical TrialsRecordsRegimenRelapseResearchResearch DesignResearch TrainingSamplingSchizophreniaScoring MethodServicesStandardizationSymptomsTechniquesTestingTimeTo specifyTrainingTranslatingTreatment EffectivenessTreatment Protocolsadjudicateadverse outcomeaffective disturbanceassociated symptombaseburden of illnessclinical practiceclinically relevantcomorbiditycomparative effectivenesscomparative effectiveness studycompare effectivenessdata qualitydisabilityeffective therapyeffectiveness testingfirst episode psychosisfunctional disabilityhealth datahospital readmissionimprovedindividualized medicineinformation modelinnovationmachine learning algorithmmachine learning methodnetwork informaticsnoveloutcome predictionpatient orientedperson centeredpersonalized medicinepredict clinical outcomepsychiatric emergencypsychosocialpsychotic symptomsresidenceresponsesexsocialsocietal costssupervised learningtooltreatment effecttreatment guidelinesunsupervised learning
项目摘要
Project Summary/Abstract Schizophrenia is associated with psychotic symptoms, mood disturbances,
deficits in cognition, comorbidities, significant social and functional impairment and is a leading cause of
disability in the U.S. and worldwide. Although antipsychotic medications and psychosocial treatments are
effective for some symptoms of schizophrenia, effective regimens for all symptoms are not established. The
primary limitation of treatment guidelines is reliance on RCTs that test limited treatments and their effects on
few symptoms and comorbidities. Trials of treatments administered to address all aspects of impairment is
prohibitively complex. Data driven machine learning (ML) can address this gap using large observational
datasets with information about complex and effective regimens used in real-world practice. ML can cluster
individuals with shared characteristics and identify unique regimens administered for their psychiatric and
clinical comorbidities. These new treatment regimens are possible precision treatments. ML algorithms can
then predict critical patient-centered outcomes for these different clusters (or classes) administered these
treatment regimens. Examining the comparative effectiveness of these treatment regimens that predict critical
outcomes is an essential next step. Unique pharmacoepidemiologic methods with observational data can
simulate clinical trials. Propensity score methods address confounding, mimicking balance achieved by
randomization in RCTs. These tools will determine which precision treatment regimens are the most effective
for the classes in these datasets. Relevance of ML findings depends on data quality. Claims have the largest,
most nationally representative samples reflecting real-world community practice patterns but use billing codes
not originally designed for research. Electronic health records (EHR) are extensive but limited due to bias from
incomplete records with uncertain accuracy and complexity due to their granular level of detail. This proposal
will establish the strengths and limitations of these dataset types by conducting ML analyses on exemplar
datasets, a Medicaid Analytic eXtract (MAX) national sample, and the Observational Health Data Sciences and
Informatics (OHDSI) network New York-Presbyterian Hospital (iNYP) EHR. An enhancement to this project will
compare more traditional multivariate and regression techniques to the ML findings identifying whether ML
provides additional information. To address the “research-practice” gap the ML results will be translated into
personalized treatment rules to inform clinical practice for schizophrenia treatment. After training in
unsupervised and supervised learning in Training Aims A and B, Research Aim 1 will identify classes and their
administered treatments in the datasets and Research Aim 2 will predict outcomes of those treatments: time to
emergency department visit, time to re-admission and incidence of comorbidities. Research Aim 3 will use
pharmacoepidemiologic methods learned in Training Aim C to compare effectiveness of the treatments,
supporting an R01 submitted at the end of this K-award to test effectiveness in an international EHR dataset.
项目摘要/摘要精神分裂症与精神病症状、情绪障碍、
认知缺陷、合并症、严重的社交和功能障碍,是导致
在美国和世界范围内的残疾。虽然抗精神病药物和心理社会治疗是
对精神分裂症的某些症状有效,但对所有症状都有效的治疗方案尚未建立。的
治疗指南的主要局限性是依赖于RCT,这些RCT测试了有限的治疗方法及其对
很少有症状和合并症。针对损伤各方面的治疗试验是
过于复杂数据驱动的机器学习(ML)可以使用大规模的观测数据来解决这一差距。
数据集,其中包含有关实际实践中使用的复杂和有效方案的信息。ML可以集群
具有共同特征的个体,并确定针对其精神病和
临床合并症。这些新的治疗方案是可能的精确治疗。ML算法可以
然后预测这些不同的集群(或类)管理这些关键的以患者为中心的结果,
治疗方案。检查这些治疗方案的比较有效性,
成果是下一个重要步骤。具有观察数据的独特药物流行病学方法可以
模拟临床试验。倾向评分方法解决了混淆问题,模拟了通过以下方式实现的平衡:
随机对照试验。这些工具将决定哪种精准治疗方案最有效
这些数据集中的类。ML结果的相关性取决于数据质量。索赔额最大,
大多数具有全国代表性的样本反映了真实世界的社区实践模式,但使用计费代码
不是为研究而设计的电子健康记录(EHR)是广泛的,但由于偏见而受到限制。
不完整的记录,由于其粒度级别的细节而具有不确定的准确性和复杂性。这项建议
我将通过对样本进行ML分析来确定这些数据集类型的优势和局限性
数据集,Medicaid Analytic eXtract(MAX)国家样本,以及观察性健康数据科学,
信息学(OHDSI)网络纽约长老会医院(iNYP)EHR。对该项目的增强将
将更传统的多变量和回归技术与ML结果进行比较,以确定ML是否
提供了其他信息。为了解决“研究-实践”的差距,ML结果将被转化为
个性化治疗规则,为精神分裂症治疗的临床实践提供信息。训练后
训练目标A和B中的无监督和监督学习,研究目标1将识别类及其
研究目标2将预测这些治疗的结果:
急诊就诊、再入院时间和合并症发生率。研究目标3将使用
在培训目标C中学习的药物流行病学方法,以比较治疗的有效性,
支持在K奖结束时提交的R 01,以测试国际EHR数据集的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natalie Bareis其他文献
Natalie Bareis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natalie Bareis', 18)}}的其他基金
Machine Learning for Precision Treatments in Schizophrenia
机器学习用于精神分裂症的精准治疗
- 批准号:
10697385 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Continuing Grant
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Research Grant