Leveraging host-imposed metal starvation to elucidate the molecular and environmental factors that dictate metal utilization by the iron/manganese superoxide dismutase superfamily
利用宿主施加的金属饥饿来阐明决定铁/锰超氧化物歧化酶超家族利用金属的分子和环境因素
基本信息
- 批准号:10617269
- 负责人:
- 金额:$ 57.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-19 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:Amino Acid SequenceAnaerobic BacteriaArchaeaBacteriaBacteroides thetaiotaomicronBindingBiochemicalBiological AssayCatalysisChemistryData SetDevelopmentDrug Metabolic DetoxicationElectron Spin Resonance SpectroscopyEnvironmentEnvironmental Risk FactorEnzymesEukaryotaEvolutionExposure toFamilyFamily memberGenus staphylococcusGoalsGrowthHumanImmuneImmune systemIn VitroIndividualInfectionInvadedInvestigationIronLeukocyte L1 Antigen ComplexLifeManganeseMetagenomicsMetalloproteinsMetalsMicrobeMolecularOrganismOxidative StressOxygenPhysiologicalPropertyProtein FamilyProteinsPublishingReportingResistanceRespiratory BurstRoleSOD2 geneShapesStaphylococcus aureusStarvationStreptococcus pneumoniaeSuperoxide DismutaseSuperoxidesTestingTimeToxic effectVariantWorkcofactorcombatcopingcystic fibrosis patientsexperimental studyimprovedinsightmembermetalloenzymemutantpathogenpathogenic microbepreferencesoft drinktool
项目摘要
Project Summary/Abstract:
Superoxide is a toxic molecule that all organisms exposed to oxygen must cope with. This is particularly true for
pathogenic microbes, as the host harnesses the toxic properties of superoxide to combat invaders via the
oxidative burst. To detoxify superoxide, nearly all forms of life, including strict anaerobes, produce superoxide
dismutase (SOD). Convergent evolution has led to the development of three independent SOD families, all of
which are dependent on metals for function. The most widely distributed family of SODs are those which depend
on iron (Fe) or manganese (Mn) for function. Members of the Fe/Mn superfamily are present in eukaryotes,
archaea, and bacteria. Despite over forty years of study, it is not possible to predict accurately the metal utilized
by members of the Fe/Mn superfamily of SODs. Difficulties in predicting metalloprotein metal utilization are not
confined to the Fe/Mn SOD superfamily but also occur with other classes of metalloenzymes. This deficiency is
driven by relatively low levels of protein sequence identity amongst SODs from different organisms that utilize
the same metal cofactor. Additionally, the environmental and molecular factors that dictate the metal used by
members of this protein superfamily are also unknown. Members of the Fe/Mn SOD superfamily are canonically
thought to use either Fe or Mn, but not both, as a cofactor. This idea arose despite early investigations that
identified Fe/Mn SOD family members that are active with both Fe and Mn. The ability of these “cambialistic”
SODs (able to use either Fe or Mn as a catalytic cofactor) was dismissed as a quirk of chemistry. At the time, it
was thought that intracellular metal concentrations did not change enough to alter the metal bound by a SOD.
S. aureus possesses two superoxide dismutases, SodA and SodM, which are ~75% identical. Initially, both
SODs were reported to be Mn-dependent. During infection, the host restricts the availability of Mn and inactivates
Mn-dependent SODs via the Mn-binding immune protein calprotectin. Recent work discovered that SodM
critically contributes to the ability of S. aureus to maintain a defense against oxidative stress when Mn-starved,
both in culture and during infection, while SodA is important when Mn is freely available. Biochemical analyses
revealed that SodM is not strictly Mn-dependent but is instead cambialistic, and the ability to use Fe enables it
to promote resistance to oxidative stress when S. aureus is Mn-limited by the host. These observations support
a physiological role for cambialism and the hypothesis that metal availability shapes the repertoire of SODs
possessed by an organism. The experiments in this proposal will evaluate this hypothesis and elucidate the
molecular features that dictate metal utilization in the Fe/Mn SOD superfamily. Aim I: Elucidate the molecular
features that dictate metal utilization of Fe/Mn SOD superfamily members. Aim II: Determine if environmental
metal availability promotes retention of a metal-specific and cambialistic SOD by S. aureus. Aim III: Elucidate
the broader contribution of cambialistic SODs to maintaining a defense against superoxide.
项目总结/文摘:
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Manganese-independent Aldolase Enables Staphylococcus aureus To Resist Host-imposed Metal Starvation.
- DOI:10.1128/mbio.03223-22
- 发表时间:2023-02-28
- 期刊:
- 影响因子:6.4
- 作者:
- 通讯作者:
Battle for Metals: Regulatory RNAs at the Front Line.
- DOI:10.3389/fcimb.2022.952948
- 发表时间:2022
- 期刊:
- 影响因子:5.7
- 作者:
- 通讯作者:
Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family.
- DOI:10.1016/j.jinorgbio.2022.111748
- 发表时间:2022-05
- 期刊:
- 影响因子:3.9
- 作者:Frye, Katie A.;Sendra, Kacper M.;Waldron, Kevin J.;Kehl-Fie, Thomas E.
- 通讯作者:Kehl-Fie, Thomas E.
An ancient metalloenzyme evolves through metal preference modulation.
- DOI:10.1038/s41559-023-02012-0
- 发表时间:2023-05
- 期刊:
- 影响因子:16.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Everett Kehl-Fie其他文献
Thomas Everett Kehl-Fie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Everett Kehl-Fie', 18)}}的其他基金
Leveraging host-imposed metal starvation to elucidate the molecular and environmental factors that dictate metal utilization by the iron/manganese superoxide dismutase superfamily
利用宿主施加的金属饥饿来阐明决定铁/锰超氧化物歧化酶超家族利用金属的分子和环境因素
- 批准号:
10294718 - 财政年份:2021
- 资助金额:
$ 57.31万 - 项目类别:
Leveraging host-imposed metal starvation to elucidate the molecular and environmental factors that dictate metal utilization by the iron/manganese superoxide dismutase superfamily
利用宿主施加的金属饥饿来阐明决定铁/锰超氧化物歧化酶超家族利用金属的分子和环境因素
- 批准号:
10407651 - 财政年份:2021
- 资助金额:
$ 57.31万 - 项目类别:
Phosphate homeostasis and uptake in Staphylococcus aureus
金黄色葡萄球菌的磷酸盐稳态和摄取
- 批准号:
10092944 - 财政年份:2020
- 资助金额:
$ 57.31万 - 项目类别:
Overcoming nutritional immunity: Staphylococcal adaptation to host-imposed manganese and zinc starvation
克服营养免疫:葡萄球菌对宿主造成的锰和锌饥饿的适应
- 批准号:
9176192 - 财政年份:2016
- 资助金额:
$ 57.31万 - 项目类别:
Overcoming nutritional immunity: Staphylococcal adaptation to host-imposed manganese and zinc starvation
克服营养免疫:葡萄球菌对宿主造成的锰和锌饥饿的适应
- 批准号:
9927982 - 财政年份:2016
- 资助金额:
$ 57.31万 - 项目类别:
Adaptation of Staphylococcus aureus to Mn and Zn starvation imposed by the host
金黄色葡萄球菌对宿主造成的锰和锌饥饿的适应
- 批准号:
8814169 - 财政年份:2014
- 资助金额:
$ 57.31万 - 项目类别:
Adaptation of Staphylococcus aureus to Mn and Zn starvation imposed by the host
金黄色葡萄球菌对宿主造成的锰和锌饥饿的适应
- 批准号:
8487526 - 财政年份:2014
- 资助金额:
$ 57.31万 - 项目类别:
Adaptation of Staphylococcus aureus to Mn-limitation imposed by the host
金黄色葡萄球菌对宿主施加的锰限制的适应
- 批准号:
8620543 - 财政年份:2012
- 资助金额:
$ 57.31万 - 项目类别:
Adaptation of Staphylococcus aureus to Mn-limitation imposed by the host
金黄色葡萄球菌对宿主施加的锰限制的适应
- 批准号:
8316652 - 财政年份:2012
- 资助金额:
$ 57.31万 - 项目类别:
相似海外基金
Identification and isolation of anaerobic bacteria that degrade bacterial cell wall
降解细菌细胞壁的厌氧菌的鉴定与分离
- 批准号:
22H02487 - 财政年份:2022
- 资助金额:
$ 57.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enzymology of cofactor and amino acid metabolism in anaerobic bacteria
厌氧菌辅助因子和氨基酸代谢的酶学
- 批准号:
RGPIN-2022-03200 - 财政年份:2022
- 资助金额:
$ 57.31万 - 项目类别:
Discovery Grants Program - Individual
High-throughput isolation of anaerobic bacteria
厌氧菌的高通量分离
- 批准号:
572711-2022 - 财政年份:2022
- 资助金额:
$ 57.31万 - 项目类别:
University Undergraduate Student Research Awards
Elucidating the mechanisms of O2-sensitivity of anaerobic bacteria Bifidobacterium.
阐明厌氧菌双歧杆菌的 O2 敏感性机制。
- 批准号:
22K07058 - 财政年份:2022
- 资助金额:
$ 57.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automatic and accurate identification of aerobic bacteria, anaerobic bacteria, yeasts, and fungi in clinical samples derived from animals and from feed for pets
自动、准确地鉴定来自动物和宠物饲料的临床样品中的需氧细菌、厌氧细菌、酵母菌和真菌
- 批准号:
10440741 - 财政年份:2021
- 资助金额:
$ 57.31万 - 项目类别:
Regulation of virulence in fungi under coculture condition with anaerobic bacteria
厌氧菌共培养条件下真菌毒力的调节
- 批准号:
21K07009 - 财政年份:2021
- 资助金额:
$ 57.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polymicrobial interactions between commensal obligate anaerobic bacteria and cystic fibrosis pathogen P. aeruginosa
共生专性厌氧菌与囊性纤维化病原体铜绿假单胞菌之间的多种微生物相互作用
- 批准号:
10275319 - 财政年份:2021
- 资助金额:
$ 57.31万 - 项目类别:
Platform for the automated isolation and characterization of anaerobic bacteria
厌氧菌自动分离和表征平台
- 批准号:
445552570 - 财政年份:2020
- 资助金额:
$ 57.31万 - 项目类别:
Major Research Instrumentation
Development of therapy for triple negative breast cancer using anaerobic bacteria
利用厌氧菌开发三阴性乳腺癌疗法
- 批准号:
19K16452 - 财政年份:2019
- 资助金额:
$ 57.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of gene engineering method for anaerobic bacteria for efficient bio-hydrogen production
开发厌氧菌高效生物制氢的基因工程方法
- 批准号:
18K11708 - 财政年份:2018
- 资助金额:
$ 57.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)