An Open Source Simulator for Multi Degree-Of-Freedom Brain-Machine Interfaces
多自由度脑机接口的开源模拟器
基本信息
- 批准号:10616502
- 负责人:
- 金额:$ 38.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsAreaArtificial IntelligenceBehaviorBrainBrain regionClinicalClinical TrialsCommunicationCommunitiesComputer softwareDataDemocracyDevelopmentDimensionsEmerging TechnologiesEquationEvaluationFeedbackFreedomFutureGoalsHumanLearningMacacaModelingMotorMotor ActivityMotor CortexMovementMovement DisordersNeural Network SimulationNeurosciencesParalysedParticipantPerformancePersonsPoliciesPopulationProsthesisPsychological reinforcementPublishingReportingResearchResearch PersonnelRoboticsSignal TransductionSoftware ToolsSystemTechniquesTechnologyTensorFlowTestingTimeTrainingTranslatingWorkarmbrain machine interfacedeep learningdeep reinforcement learningdesignexperimental studyhuman modelhuman-in-the-loopimprovedinnovationkinematicsmind controlneuralneurosurgerynonhuman primatenovelopen sourcerecurrent neural networkresponsesimulationtool
项目摘要
PROJECT SUMMARY
For millions with movement disorders including paralysis and ALS, intracortical brain-machine interfaces (BMIs)
are an emerging technology that aims to restore lost motor function and communication. The main component
of a BMI is a decoder algorithm that translates neural activity from motor areas of the brain into the kinematics
of a prosthetic device. Due to the complexity of these systems, which includes the BMI user interacting with the
decoded kinematics in a closed-feedback loop, current technology requires expensive and invasive experiments
to design, optimize, and validate decoder algorithms. The need for such experiments (1) results in slow develop-
ment and evaluation of decoder algorithms, and (2) limits the scope of people who can work on these problems
to a small group of nonhuman primate and clinical trial labs. As a consequence, BMIs have remained in pilot
clinical trials since their first reported demonstration in 2004.
We propose a new open-source simulator for multiple degree-of-freedom (DOF) BMI systems. The goals of this
simulator are to (1) reduce the time it takes to evaluate and optimize BMI algorithms from months to minutes,
and (2) significantly expand the community of researchers who develop testable algorithms for BMIs. To build
the simulator, we propose neural encoding models that generate synthetic motor cortical activity for multiple DOF
tasks. This is possible because neural population activity is relatively low-dimensional and has dynamics, which
can be learned via recurrent neural networks (RNNs). We build our neural simulators using data collected from
human clinical trials during point-to-point multi-DOF reaches. We also propose to develop new models of human
controllers. This solves an important problem in BMIs: users learn new control strategies when controlling a
particular BMI decoder algorithm. Our simulator uses deep imitation and reinforcement learning to solve this
problem. It is constrained through imitation learning to perform actions like a human. It is optimized through
reinforcement learning to explore new strategies – under the constraint of being human-like – to optimally control
the BMI. Together, we expect these innovations will result in a purely software simulator that accurately predicts
BMI performance and enables design and optimization. This tool will be open-sourced and available to all,
enabling widespread development of BMIs.
项目摘要
对于数百万患有运动障碍(包括瘫痪和ALS)的人来说,皮质内脑机接口(BMI)
是一项旨在恢复失去的运动功能和交流的新兴技术。主要成分
BMI是一种解码器算法,它将大脑运动区域的神经活动转换为运动学
一个假肢装置。由于这些系统的复杂性,包括BMI用户与
在封闭反馈回路中解码运动学,当前的技术需要昂贵和侵入性的实验
设计、优化和验证解码器算法。这种实验的需要(1)导致缓慢的发展-
解码器算法的评估和评价,以及(2)限制了可以研究这些问题的人员的范围
一小群非人类灵长类动物和临床试验实验室。因此,BMI仍处于试点阶段
自2004年首次报告演示以来,
我们提出了一个新的开源模拟器多自由度(DOF)BMI系统。这个的目标
模拟器的目的是(1)将评估和优化BMI算法所需的时间从数月减少到数分钟,
(2)显著扩大为BMI开发可测试算法的研究人员群体。建立
模拟器,我们提出了神经编码模型,产生多自由度的合成运动皮层活动
任务这是可能的,因为神经群体活动是相对低维的,并且具有动态性,
可以通过递归神经网络(RNN)学习。我们使用从以下来源收集的数据来构建神经模拟器:
点对点多自由度范围内的人体临床试验。我们还建议开发新的人类模型,
控制器。这解决了BMI中的一个重要问题:用户在控制
BMI解码算法。我们的模拟器使用深度模仿和强化学习来解决这个问题
问题.它通过模仿学习来限制自己像人类一样执行动作。它通过以下方式进行优化:
强化学习探索新的策略-在像人类一样的约束下-以最佳控制
BMI。总之,我们希望这些创新将导致一个纯粹的软件模拟器,准确地预测
BMI性能,并实现设计和优化。该工具将是开源的,所有人都可以使用,
使BMI得以广泛发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Chau-Yan Kao其他文献
Jonathan Chau-Yan Kao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Chau-Yan Kao', 18)}}的其他基金
An Open Source Simulator for Multi Degree-Of-Freedom Brain-Machine Interfaces
多自由度脑机接口的开源模拟器
- 批准号:
10183995 - 财政年份:2021
- 资助金额:
$ 38.08万 - 项目类别:
An Open Source Simulator for Multi Degree-Of-Freedom Brain-Machine Interfaces
多自由度脑机接口的开源模拟器
- 批准号:
10398897 - 财政年份:2021
- 资助金额:
$ 38.08万 - 项目类别:
Next generation brain-machine interfaces controlled synergistically with artificial intelligence
与人工智能协同控制的下一代脑机接口
- 批准号:
10003004 - 财政年份:2020
- 资助金额:
$ 38.08万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 38.08万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 38.08万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 38.08万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 38.08万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 38.08万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 38.08万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 38.08万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 38.08万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 38.08万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 38.08万 - 项目类别:
Standard Grant