Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
基本信息
- 批准号:10589931
- 负责人:
- 金额:$ 72.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-07 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdmission activityAdoptedAirAlgorithmsAmericanAnesthesia proceduresAnimalsArchitectureCalibrationCaliforniaCaringCessation of lifeCharacteristicsClassificationClinicalClinical Decision Support SystemsClinical ManagementClinical ResearchComplexCritical CareDataData SetDatabasesDevelopmentDiagnosisDiseaseDocumentationEffectivenessElectronic Health RecordEnvironmentEtiologyEvaluationFrequenciesGoalsHealthHealthcareHealthcare SystemsHomeostasisHospital MortalityHospitalsHypotensionInsufflationIntensive Care UnitsInterventionIntra-abdominalIntraoperative CareIntraoperative PeriodIntubationKnowledgeLeadLos AngelesMachine LearningMeasuresMedical centerModelingMonitorNatureOperating RoomsOperative Surgical ProceduresOutcomePathologic ProcessesPatient CarePatientsPatternPerioperativePhasePhysiologicalPostoperative ComplicationsPostoperative PeriodProcessRecommendationRegistriesResource AllocationResourcesResuscitationReverse engineeringRunningSamplingShockSignal TransductionSkinSpecificityStressSurgical incisionsTechniquesTestingTimeTitrationsTrainingUniversitiesValidationVariantWorkclinical careclinical decision supportclinical predictive modelclinical riskcohortdata integrationdata streamsdata structuredatabase structuredeep neural networkdemographicsdensitydiagnostic accuracyeffectiveness evaluationelectronic health dataelectronic health record systemgraphical user interfacehemodynamicshigh riskimprovedinformation displayinsightinteroperabilityiterative designlarge datasetsmachine learning algorithmmachine learning modelmodel developmentmortalityneural network algorithmnovelorgan injurypatient populationpersonalized medicinepreconditioningpredictive toolspressureprospectiveprototyperelational databaseresponserisk predictionsimulation environmentstressorsupport toolssurgical risktreatment response
项目摘要
Project Summary / Abstract
If one could accurately predict who, when and why patients develop cardiorespiratory instability (CRI) during
surgery, then effective preemptive treatments could be given to improve postoperative outcome and more
effectively use healthcare resources. But signs of shock often occur late once organ injury is already present.
The goal of this proposal is to develop, validate, and test real-time intraoperative risk prediction tools based on
electronic health record (EHR) data and high-fidelity physiological waveforms to predict CRI and make the
databases of intraoperative data and waveforms used for these developments freely accessible. This is
extremely relevant because although 5.7 million Americans are admitted to an Intensive Care Units (ICU) in one
year, more than 42 millions undergo surgery annually. Previous and ongoing studies conducted in the ICU and
in the step down unit have built the architecture to collect real-time high-fidelity physiological waveform data
streams and integrate them with patient demographics from the EHR to build large data sets, and derive
actionable fused parameters based on machine learning (ML) analytics as well as display information in real
time at the bedside to drive clinical decision support (CDS) in the critical care setting. The goal of this proposal
is to apply these ML approaches to the complex and time compressed environment of high-risk surgery where
greater patient and disease variability exist and shorter period of time is available to deliver truly personalized
medicine approaches. The work will be initiated using an already existing annotated intraoperative database
from the University of California Irvine including EHR and high-fidelity waveform data. This operating room
database already exists and needs only to be extracted. This data will be used for the initial training and
development of the ML model that will then be tested on prospectively collected University of California Los
Angeles and University of Pittsburgh Medical Center databases. Simultaneously, this approach will use existing
knowledge of CRI patterns derived from previous step down unit / intensive care unit cohorts, MIMIC II data,
University of California Irvine data, and animal studies to create smart alarms and graphic user interface for
clinical decision support based on functional hemodynamic monitoring principles. The next step will then
leverage the focus on the issues and strengths of the intraoperative environment, some of which can be listed
as: 1) Known patients characteristics before surgery to define pre-stress baseline, allowing functional
hemodynamic monitoring stress evaluations, preconditioning, and other preoperative calibrations, 2) High
degree of direct observation and data density during most phases of surgery allowing close semi-autonomous
monitoring and titration of novel treatment algorithms early, 3) Defined stages in the initial part of surgery
(induction, intubation, skin incision) allowing ML approaches to build large common relational database
registries, and 4) Defined surgical procedure and stressors (anesthesia induction, intra-abdominal air insufflation,
and other surgery-specific interventions), which will alter the impact of CRI on measured variables.
项目总结/摘要
如果人们能够准确地预测谁,何时以及为什么患者在治疗期间发生心肺不稳定(CRI),
手术,然后可以给予有效的先发制人的治疗,以改善术后结果,
有效利用医疗资源。但是一旦器官损伤已经存在,休克的迹象往往会出现得很晚。
该提案的目标是开发、验证和测试实时术中风险预测工具,
电子健康记录(EHR)数据和高保真生理波形来预测CRI并使
可免费访问用于这些开发的术中数据和波形数据库。这是
这是非常重要的,因为尽管570万美国人被送进了重症监护室(ICU),
每年有超过4200万人接受手术。既往和正在ICU进行的研究,
在降压单元中建立了实时采集高保真生理波形数据的体系结构
数据流,并将其与EHR中的患者人口统计数据整合,以构建大型数据集,
基于机器学习(ML)分析的可操作融合参数以及真实的显示信息
在床边的时间,以推动临床决策支持(CDS)在重症监护环境。这项提案的目的是
将这些ML方法应用于高风险手术的复杂和时间压缩环境,
存在更大的患者和疾病变异性,并且可以在更短的时间内提供真正个性化的
医学接近。这项工作将开始使用一个已经存在的注释术中数据库
包括EHR和高保真波形数据。这个手术室
数据库已存在,只需要提取。这些数据将用于初始培训,
开发ML模型,然后在加州洛杉矶大学前瞻性收集的数据上进行测试。
Angeles和匹兹堡大学医学中心数据库。同时,这种方法将利用现有的
从既往降压病房/重症监护病房队列中获得的CRI模式知识,MIMIC II数据,
加州尔湾大学的数据和动物研究,以创建智能报警和图形用户界面,
基于功能性血流动力学监测原理的临床决策支持。下一步将
重点关注术中环境的问题和优势,其中一些可以列出
作为:1)术前已知患者特征,以定义预应力基线,允许功能
血流动力学监测应力评价、预处理和其他术前校准,2)高
在手术的大多数阶段,直接观察的程度和数据密度允许近距离半自主
早期监测和滴定新的治疗算法,3)手术初始部分的定义阶段
(诱导,插管,皮肤切开)允许ML方法构建大型通用关系数据库
登记,和4)定义的外科手术和应激源(麻醉诱导,腹腔内空气吹入,
和其他手术特定干预),这将改变CRI对测量变量的影响。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Noninvasive Monitoring and Potential for Patient Outcome.
无创监测和患者结果的潜力。
- DOI:10.1053/j.jvca.2019.03.045
- 发表时间:2019
- 期刊:
- 影响因子:2.8
- 作者:Vacas,Susana;Cannesson,Maxime
- 通讯作者:Cannesson,Maxime
Intraoperative High Tidal Volume Ventilation and Postoperative Acute Respiratory Distress Syndrome in Liver Transplant.
- DOI:10.1016/j.transproceed.2021.10.030
- 发表时间:2022-04
- 期刊:
- 影响因子:0.9
- 作者:Yang J;Cheng D;Hofer I;Nguyen-Buckley C;Disque A;Wray C;Xia VW
- 通讯作者:Xia VW
Postoperative respiratory failure: An update on the validity of the Agency for Healthcare Research and Quality Patient Safety Indicator 11 in an era of clinical documentation improvement programs.
- DOI:10.1016/j.amjsurg.2019.11.019
- 发表时间:2020-07
- 期刊:
- 影响因子:3
- 作者:Stocking, Jacqueline C.;Utter, Garth H.;Drake, Christiana;Aldrich, J. Matthew;Ong, Michael K.;Amin, Alpesh;Marmor, Rebecca A.;Godat, Laura;Cannesson, Maxime;Gropper, Michael A.;Romano, Patrick S.
- 通讯作者:Romano, Patrick S.
Control of Postoperative Hypotension Using a Closed-Loop System for Norepinephrine Infusion in Patients After Cardiac Surgery: A Randomized Trial.
- DOI:10.1213/ane.0000000000005888
- 发表时间:2022-05-01
- 期刊:
- 影响因子:5.7
- 作者:
- 通讯作者:
The Evolution of Ultrasound in Critical Care: From Procedural Guidance to Hemodynamic Monitor.
超声在重症监护中的演变:从程序指导到血流动力学监测。
- DOI:10.1002/jum.15403
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Barjaktarevic I;Kenny JS;Berlin D;Cannesson M
- 通讯作者:Cannesson M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxime Cannesson其他文献
Maxime Cannesson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxime Cannesson', 18)}}的其他基金
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
- 批准号:
10753822 - 财政年份:2023
- 资助金额:
$ 72.05万 - 项目类别:
Multidisciplinary Anesthesiology and Perioperative Medicine Research Training Program
多学科麻醉学和围手术期医学研究培训计划
- 批准号:
10556264 - 财政年份:2023
- 资助金额:
$ 72.05万 - 项目类别:
Biomedical Informatics Tools for Applied Perioperative Physiology
应用围手术期生理学的生物医学信息学工具
- 批准号:
10376293 - 财政年份:2020
- 资助金额:
$ 72.05万 - 项目类别:
Biomedical Informatics Tools for Applied Perioperative Physiology
应用围手术期生理学的生物医学信息学工具
- 批准号:
10612383 - 财政年份:2020
- 资助金额:
$ 72.05万 - 项目类别:
Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
- 批准号:
10330420 - 财政年份:2019
- 资助金额:
$ 72.05万 - 项目类别: