Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
基本信息
- 批准号:10330420
- 负责人:
- 金额:$ 74.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-07 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdoptedAirAlgorithmsAmericanAnesthesia proceduresAnimalsArchitectureCalibrationCaliforniaCaringCessation of lifeCharacteristicsClassificationClinicalClinical Decision Support SystemsClinical ManagementClinical ResearchComplexCritical CareDataData SetDatabasesDevelopmentDiagnosisDiseaseDocumentationEffectivenessElectronic Health RecordEnvironmentEtiologyEvaluationFrequenciesGoalsHealthHealthcareHealthcare SystemsHomeostasisHospital MortalityHospitalsHypotensionInsufflationIntensive Care UnitsInterventionIntra-abdominalIntraoperative CareIntraoperative PeriodIntubationKnowledgeLeadLos AngelesMachine LearningMeasuresMedical centerModelingMonitorNatureOperating RoomsOperative Surgical ProceduresOutcomePathologic ProcessesPatient CarePatientsPatternPerioperativePhasePhysiologicalPostoperative ComplicationsPostoperative PeriodProcessRecommendationRegistriesResourcesResuscitationReverse engineeringRunningSamplingShockSignal TransductionSkinSpecificityStressSurgical incisionsSystemTechniquesTestingTimeTitrationsTrainingUniversitiesValidationVariantWorkbaseclinical careclinical decision supportclinical riskcohortdata integrationdata streamsdata structuredatabase structuredeep neural networkdemographicsdensitydiagnostic accuracyeffectiveness evaluationelectronic datagraphical user interfacehemodynamicshigh riskimprovedinformation displayinsightinteroperabilityiterative designlarge datasetsmachine learning algorithmmachine learning modelmodel developmentmortalityneural network algorithmnovelorgan injurypatient populationpersonalized medicinepreconditioningpredictive modelingpredictive toolspressureprospectiveprototyperelational databaseresponserisk predictionsimulation environmentstressorsupport toolssurgical risktooltreatment response
项目摘要
Project Summary / Abstract
If one could accurately predict who, when and why patients develop cardiorespiratory instability (CRI) during
surgery, then effective preemptive treatments could be given to improve postoperative outcome and more
effectively use healthcare resources. But signs of shock often occur late once organ injury is already present.
The goal of this proposal is to develop, validate, and test real-time intraoperative risk prediction tools based on
electronic health record (EHR) data and high-fidelity physiological waveforms to predict CRI and make the
databases of intraoperative data and waveforms used for these developments freely accessible. This is
extremely relevant because although 5.7 million Americans are admitted to an Intensive Care Units (ICU) in one
year, more than 42 millions undergo surgery annually. Previous and ongoing studies conducted in the ICU and
in the step down unit have built the architecture to collect real-time high-fidelity physiological waveform data
streams and integrate them with patient demographics from the EHR to build large data sets, and derive
actionable fused parameters based on machine learning (ML) analytics as well as display information in real
time at the bedside to drive clinical decision support (CDS) in the critical care setting. The goal of this proposal
is to apply these ML approaches to the complex and time compressed environment of high-risk surgery where
greater patient and disease variability exist and shorter period of time is available to deliver truly personalized
medicine approaches. The work will be initiated using an already existing annotated intraoperative database
from the University of California Irvine including EHR and high-fidelity waveform data. This operating room
database already exists and needs only to be extracted. This data will be used for the initial training and
development of the ML model that will then be tested on prospectively collected University of California Los
Angeles and University of Pittsburgh Medical Center databases. Simultaneously, this approach will use existing
knowledge of CRI patterns derived from previous step down unit / intensive care unit cohorts, MIMIC II data,
University of California Irvine data, and animal studies to create smart alarms and graphic user interface for
clinical decision support based on functional hemodynamic monitoring principles. The next step will then
leverage the focus on the issues and strengths of the intraoperative environment, some of which can be listed
as: 1) Known patients characteristics before surgery to define pre-stress baseline, allowing functional
hemodynamic monitoring stress evaluations, preconditioning, and other preoperative calibrations, 2) High
degree of direct observation and data density during most phases of surgery allowing close semi-autonomous
monitoring and titration of novel treatment algorithms early, 3) Defined stages in the initial part of surgery
(induction, intubation, skin incision) allowing ML approaches to build large common relational database
registries, and 4) Defined surgical procedure and stressors (anesthesia induction, intra-abdominal air insufflation,
and other surgery-specific interventions), which will alter the impact of CRI on measured variables.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxime Cannesson其他文献
Maxime Cannesson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxime Cannesson', 18)}}的其他基金
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
- 批准号:
10753822 - 财政年份:2023
- 资助金额:
$ 74.66万 - 项目类别:
Multidisciplinary Anesthesiology and Perioperative Medicine Research Training Program
多学科麻醉学和围手术期医学研究培训计划
- 批准号:
10556264 - 财政年份:2023
- 资助金额:
$ 74.66万 - 项目类别:
Biomedical Informatics Tools for Applied Perioperative Physiology
应用围手术期生理学的生物医学信息学工具
- 批准号:
10376293 - 财政年份:2020
- 资助金额:
$ 74.66万 - 项目类别:
Biomedical Informatics Tools for Applied Perioperative Physiology
应用围手术期生理学的生物医学信息学工具
- 批准号:
10612383 - 财政年份:2020
- 资助金额:
$ 74.66万 - 项目类别:
Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
- 批准号:
10589931 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 74.66万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 74.66万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 74.66万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 74.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 74.66万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 74.66万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
Research Fellowships