Biomedical Informatics Tools for Applied Perioperative Physiology
应用围手术期生理学的生物医学信息学工具
基本信息
- 批准号:10376293
- 负责人:
- 金额:$ 61.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAddressAdoptedAgreementAlgorithmsAmericanAnesthesia proceduresAnesthesiologyAnimal ModelAreaAttentionBiologicalCalibrationCaliforniaCause of DeathCentral venous pressureCertified registered nurse anesthetistCharacteristicsClinicalClinical MedicineCommunitiesComplexCritical CareDataData CollectionData SetDatabasesDetectionDevelopmentDimensionsDocumentationEarly DiagnosisElectrocardiogramElectronic Health RecordEventFutureGenderGoalsHandHealth PersonnelHeart ArrestHospitalsHumanIncidenceIndustryIngestionInpatientsIntensive Care UnitsIsraelKnowledgeLeadLos AngelesMachine LearningMeasuresMedical centerMedicineMelonsMinority GroupsModelingMonitorMorbidity - disease rateOperating RoomsOperative Surgical ProceduresPatient CarePatient Monitoring SystemPatient-Focused OutcomesPatientsPatternPerioperativePhysiologic MonitoringPhysiologicalPhysiologyPopulation HeterogeneityPostoperative PeriodProceduresProcessProviderRegistriesResearchResearch PersonnelResourcesSeriesShockSourceStressSystemTechnologyTherapeutic InterventionTimeTrainingTwin Multiple BirthUniversitiesValidationWorkacute carealgorithm developmentanalytical toolbasebiomedical informaticscardiovascular collapseclinical decision supportclinical decision-makingclinically relevantcloud basedcomputer sciencedata archivedata integrationdata streamsdeep learningdensityhuman datahuman subjectimprovedinformatics toolinformation displayinterestinteroperabilitylarge datasetslearning algorithmmachine learning algorithmmonitoring devicemortalitynovelpredictive modelingpredictive signaturepredictive toolspressurepublic databaserelational databasesexstressortool
项目摘要
Project Summary / Abstract
Even though US hospitals have widely adopted electronic health record (EHR) documentation of patient care,
interoperability of these systems remains an issue, leading to challenges in data integration. In the operating
room (OR) setting, during surgery, physiological waveforms (arterial pressure, EKG, SpO2, central venous
pressure, etc.) represent a large source of information used by clinical monitors to extract and display information
in order for healthcare providers to make clinical decisions. Integration and synchronization of high-quality EHR
and physiological waveform data in large datasets of surgical patients would allow machine learning and deep
learning approaches to plumb these datasets for clinically relevant signatures that would promote advanced OR
patient monitoring systems to define present state, predict state trajectory, suggest effective counter measures
to minimize patients decompensated states, and define the usefulness and efficacy of new monitoring devices.
The objective of this proposal is to focus the resources of an interdisciplinary team from academia (University of
California Los Angeles (UCLA), University of California Irvine (UCI), and Carnegie Mellon University Computer
Sciences), industry (Edwards Lifesciences Critical Care), and clinical medicine (anesthesiology, surgery, and
critical care at UCLA, UCI, Beth Israel, and University of Pittsburgh Medical Center) to create, develop, and
organize large surgical datasets combining EHR and high fidelity physiological waveform data, to make these
datasets freely accessible, and to develop new predictive/forecasting monitoring systems for the surgical
patients. The study will begin with the development of a machine learning algorithm to predict cardiovascular
collapse during surgery. This algorithm development will be based on physiological signatures predictive of
cardiovascular collapse identified in the animal models of shock. The study hypothesis is that the combination
of two separate OR databases containing EHR and physiological waveforms will allow for training and
development of monitoring solutions, predictive and/or prescriptive analytics tools, clinical decision support, and
validate them on an independent, external validation database. The surgical setting is relevant because although
5.7 million Americans are admitted annually to an Intensive Care Unit, more than 50 million undergo surgery.
OR databases are unique in medicine because: 1) Changes occur quickly and the lead-time before an event is
compressed; 2) Knowledge of baseline/pre-stress status of surgical patients allows normalization, calibration,
and markedly enhances prediction; 3) Continuous and immediate presence of dense skilled acute care
practitioners allows faster implementation of complex treatment algorithms in the OR; and 4) Defined stages,
procedures, and stressors allow building large common relational database registries. By helping to focus the
provider's attention on significant events and changes in the patient's state and by suggesting physiological
interpretations of that state, such systems will permit early detection of complex problems and provide guidance
on therapeutic interventions improving patient outcomes.
项目总结/摘要
尽管美国医院已广泛采用电子健康记录(EHR)记录患者护理,
这些系统的互操作性仍然是一个问题,导致数据整合方面的挑战。在手术
手术室(OR)设置、手术期间、生理波形(动脉压、EKG、SpO 2、中心静脉
压力等)表示临床监视器用来提取和显示信息的大量信息源
以便医疗服务提供者做出临床决策。高质量EHR的集成和同步
手术患者的大型数据集中的生理波形数据将允许机器学习和深度
学习方法来探测这些数据集的临床相关特征,这些特征将促进高级OR
患者监测系统,用于定义当前状态,预测状态轨迹,建议有效的应对措施
以最大限度地减少患者的失代偿状态,并确定新监测设备的有用性和有效性。
这项建议的目的是集中学术界(大学)的跨学科小组的资源,
加州洛杉矶(UCLA)、加州尔湾大学(UCI)和卡内基梅隆大学计算机
科学)、工业(Edwards Lifesciences Critical Care)和临床医学(麻醉学、外科学和
加州大学洛杉矶分校,加州大学洛杉矶分校,贝丝以色列和匹兹堡大学医学中心的重症监护),以创建,开发,
组织结合EHR和高保真生理波形数据的大型手术数据集,
数据集免费访问,并开发新的预测/预报监测系统,
患者这项研究将开始,开发一种机器学习算法来预测心血管疾病。
在手术中崩溃该算法的开发将基于生理特征预测,
在休克动物模型中发现的心血管衰竭。研究假设是,
包含EHR和生理波形的两个单独的OR数据库将允许训练,
开发监测解决方案、预测性和/或规范性分析工具、临床决策支持,以及
在独立的外部验证数据库上验证它们。手术设置是相关的,因为虽然
5.7每年有1000万美国人进入重症监护室,超过5000万人接受手术。
手术室数据库在医学上是独一无二的,因为:1)变化发生得很快,事件发生前的提前期很短。
压缩; 2)手术患者的基线/预应力状态的知识允许标准化,校准,
并显着提高预测; 3)连续和立即存在密集熟练的急性护理
从业者允许在OR中更快地实现复杂的治疗算法;以及4)限定的阶段,
过程和压力源允许构建大型通用关系数据库注册表。通过帮助集中
提供者对患者状态中的重大事件和变化的关注,并通过建议生理
通过对这种状态的解释,这种系统将能够及早发现复杂的问题,并提供指导。
治疗干预改善病人的预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxime Cannesson其他文献
Maxime Cannesson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxime Cannesson', 18)}}的其他基金
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
- 批准号:
10753822 - 财政年份:2023
- 资助金额:
$ 61.09万 - 项目类别:
Multidisciplinary Anesthesiology and Perioperative Medicine Research Training Program
多学科麻醉学和围手术期医学研究培训计划
- 批准号:
10556264 - 财政年份:2023
- 资助金额:
$ 61.09万 - 项目类别:
Biomedical Informatics Tools for Applied Perioperative Physiology
应用围手术期生理学的生物医学信息学工具
- 批准号:
10612383 - 财政年份:2020
- 资助金额:
$ 61.09万 - 项目类别:
Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
- 批准号:
10330420 - 财政年份:2019
- 资助金额:
$ 61.09万 - 项目类别:
Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
- 批准号:
10589931 - 财政年份:2019
- 资助金额:
$ 61.09万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 61.09万 - 项目类别:
Research Grant