Notch signaling and Bone Fracture Healing
Notch信号传导和骨折愈合
基本信息
- 批准号:10589870
- 负责人:
- 金额:$ 56.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgonistBMP2 geneBone InjuryBone RegenerationBone callusBypassCell Differentiation processCell LineageCellsCephalicChondrocytesClinicalComplementComplexDataDefectDevelopmentEndothelial CellsEndotheliumEnsureEnvironmentFemoral FracturesFemurFractureGene ExpressionGenerationsGoalsHistologyImpaired healingImpairmentInjuryJointsLaboratoriesLaboratory StudyLigandsLoxP-flanked alleleMechanicsMesenchymal DifferentiationMesenchymal Stem CellsModelingMolecular AnalysisMolecular TargetMusNatural regenerationNotch Signaling PathwayOsteoblastsOsteocytesOsteogenesisOutcomePeriosteumPlayProcessProliferatingProteinsPublicationsPublishingReceptor InhibitionRegulationRegulatory PathwayResearch PersonnelRoleSignal TransductionSourceTestingTherapeuticTimeTissuesTranslatingVascularizationWorkbonebone fracture repairbone healingcell typeclinically relevantefficacy evaluationexperiencehealingimprovedin vivoinducible Crejagged1 proteinlong bonemouse modelnew therapeutic targetnotch proteinnovel therapeuticspre-clinicalpreclinical studypromoterreceptorskeletal regenerationstem cell proliferationtranslational study
项目摘要
There is an urgent clinical need to develop new therapeutics to promote healing of bone. While most
bone injuries heal, many do not, particularly large defects. Understanding cellular signaling mechanisms that
regulate normal healing, can lead us to new therapeutic targets. Notch signaling regulates the expansion and
differentiation of mesenchymal progenitor cells (MPC) and regulates vascularization of many tissues,
including bone. Our studies, and published studies from other investigators, show that Notch signaling is a
key regulatory pathway during bone healing. Indeed, our preliminary and published results show that
increasing Notch signaling in MPCs improves bone regeneration, and that global inhibition of Notch using
various models, deleteriously impacts healing. To sufficiently advance our understanding of Notch signaling
in bone healing, and translate these mechanistic observations, will require robust experimentation, including
preclinical studies in relevant injury models. Our long-term goal is to develop a clinically relevant approach
to increase Notch signaling that enhances bone healing.
We hypothesize that Notch signaling promotes expansion of MPCs and callus vascularization, leading
to enhanced bone formation. We will interrogate the Notch signaling pathway during bone healing to reveal a
deeper understanding of ligands and receptors that are at play during healing, and the cell-type specific
expression of these signaling components. This work will be completed in two specific Aims, using state of
the art mouse models. In the first Aim, we will study the role of Notch ligands. Our work has previously
demonstrated that Jagged1 is the dominant Notch ligand expressed in MPCs and the osteochondrogenic
lineage. We will disrupt Jag1 specifically in MPCs, chondrocytes, osteoblasts and osteocytes in the callus
during fracture healing. Additionally, as Jag1 and Dll4 produced by endothelial cells regulate vascularization,
we will determine which is the dominant ligand regulating vascularization using conditional deletion of both
ligands from endothelial cells using Cdh5-CreER. A spectrum of fracture healing outcomes, including
vascularization, as well as effects on endothelial cell and MPC proliferation and MPC differentiation will be
determined in vivo. We will capitalize on our extensive experience using inducible Cre mice to ensure normal
development thereby by-passing developmental effects of ligand disruption. These studies will be
complemented with a translational study in which Jag1 protein, alone or in combination with an existing
therapy, BMP2, will be delivered during healing of critical sized femoral defects. In the second Aim, we will
examine the role of Notch receptors on MPC and endothelial cells using Notch1 or Notch2 floxed mice. We
will determine whether these receptors are critical for defect healing driven by BMP2 or Jag1. This study will
significantly advance the field by clarifying the cell-specific role of ligand and receptor during bone healing,
and provide the preclinical relevance for local activation Notch signaling to increase bone defect healing.
紧急临床需要开发新的治疗剂来促进骨骼的愈合。虽然大多数
骨骼损伤愈合,许多人没有,尤其是大缺陷。了解细胞信号传导机制
调节正常的愈合,可能导致我们达到新的治疗靶点。 Notch信号传导调节膨胀和
间质祖细胞(MPC)的分化,并调节许多组织的血管形成,
包括骨头。我们的研究并发表了其他研究人员的研究,表明Notch信号是一种
骨骼愈合过程中的关键调节途径。确实,我们的初步和发表的结果表明
增加MPC中的Notch信号传导可改善骨再生,并使用Notch的全局抑制
各种模型,有害影响康复。充分提高了我们对Notch信号的理解
在骨骼愈合和翻译这些机械观察中,将需要强大的实验,包括
相关伤害模型中的临床前研究。我们的长期目标是开发一种与临床相关的方法
增加凹口信号,以增强骨骼愈合。
我们假设Notch信号促进了MPC和愈伤组织血管的扩张,
增强骨形成。我们将在骨骼愈合过程中询问Notch信号通路,以揭示
对愈合过程中正在发挥作用的配体和受体的更深入了解,细胞类型的特异性
这些信号传导组件的表达。这项工作将以两个特定的目的完成,使用
艺术鼠标模型。在第一个目标中,我们将研究Notch配体的作用。我们的工作以前有
证明JAGGED1是MPC和骨软骨的主要缺口配体
血统。我们将在MPC,软骨细胞,成骨细胞和骨细胞中特别破坏JAG1
在断裂愈合期间。另外,作为内皮细胞产生的JAG1和DLL4调节血管,
我们将确定使用两者的条件缺失的主要配体调节血管化的配体
使用CDH5-CREER来自内皮细胞的配体。一系列骨折治愈结果,包括
血管形成以及对内皮细胞和MPC增殖和MPC分化的影响将是
确定体内。我们将利用诱导CRE小鼠来利用我们的丰富经验,以确保正常
发展,从而涵盖了配体破坏的发育效果。这些研究将是
补充了一项翻译研究,其中JAG1蛋白单独或与现有
疗法BMP2将在关键大小股骨缺陷的愈合过程中进行。在第二个目标中,我们将
使用Notch1或Notch2 Floxed小鼠检查Notch受体在MPC和内皮细胞上的作用。我们
将确定这些受体对于由BMP2或JAG1驱动的缺陷愈合至关重要。这项研究会
通过阐明骨愈合过程中配体和受体的细胞特异性作用来显着推进该领域,
并提供临床前的相关性,以使局部激活Notch信号传导增加骨缺损愈合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kurt David Hankenson其他文献
Kurt David Hankenson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kurt David Hankenson', 18)}}的其他基金
FASEB SRC: Matricellular Proteins: Fundamental Concepts and New Directions
FASEB SRC:基质细胞蛋白:基本概念和新方向
- 批准号:
10468385 - 财政年份:2022
- 资助金额:
$ 56.1万 - 项目类别:
ORS-ISFR 17th Biennial Conference: Thinking big on fracture repair
ORS-ISFR 第 17 届双年会:对骨折修复的大思考
- 批准号:
10066004 - 财政年份:2020
- 资助金额:
$ 56.1万 - 项目类别:
Endosteal Adipose in Age-Associated Osteopenia
年龄相关性骨质减少中的骨内脂肪
- 批准号:
7149432 - 财政年份:2006
- 资助金额:
$ 56.1万 - 项目类别:
相似国自然基金
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载自组装型非核苷类STING激动剂的亚精胺水凝胶用于抗肿瘤免疫治疗及机制研究
- 批准号:82303561
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向SIRT3小分子激动剂调控三阴性乳腺癌细胞自噬和免疫微环境的机制研究
- 批准号:82373193
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于OSMAC-GNPS分析策略的蚂蚱内生真菌Aspergillus sp.中新颖泛PPAR激动剂的发现及治疗NASH研究
- 批准号:82304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究FSP1激动剂在治疗肾缺血再灌注损伤中的分子机理与应用
- 批准号:82304600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bone Morphogenic Protein Receptor 1a signaling controls stability of Treg cell phenotype
骨形态发生蛋白受体 1a 信号传导控制 Treg 细胞表型的稳定性
- 批准号:
10727297 - 财政年份:2023
- 资助金额:
$ 56.1万 - 项目类别:
Specialized Proresolving Lipid Mediator-Enhanced Stem Cell Therapy and Tissue Regeneration
专门的溶解脂质介质增强干细胞治疗和组织再生
- 批准号:
10659020 - 财政年份:2022
- 资助金额:
$ 56.1万 - 项目类别:
Specialized Proresolving Lipid Mediator-Enhanced Stem Cell Therapy and Tissue Regeneration
专门的溶解脂质介质增强干细胞治疗和组织再生
- 批准号:
10429454 - 财政年份:2022
- 资助金额:
$ 56.1万 - 项目类别:
Serotonin receptor contribution to inflammation-induced calcific aortic valve disease
血清素受体对炎症引起的钙化主动脉瓣疾病的贡献
- 批准号:
10365996 - 财政年份:2019
- 资助金额:
$ 56.1万 - 项目类别:
Local Control of endochondral ossification by retinoid-loaded nano-particles
类视黄醇纳米颗粒对软骨内骨化的局部控制
- 批准号:
10238000 - 财政年份:2018
- 资助金额:
$ 56.1万 - 项目类别: