Mitochondrial transfer from astrocytes to glioblastoma cells drives tumor growth
线粒体从星形胶质细胞转移到胶质母细胞瘤细胞驱动肿瘤生长
基本信息
- 批准号:10579532
- 负责人:
- 金额:$ 15.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-03 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAcetylationAddressAffectAstrocytesAutomobile DrivingBiological AssayBiologyBone MarrowBrainBrain NeoplasmsCell CycleCell LineageCell ProliferationCell modelCellsChemotherapy and/or radiationChromatinCoculture TechniquesComplexCytoskeletonDataDevelopmentDiseaseEndogenous RetrovirusesEndothelial CellsEndotheliumEnzymesEpigenetic ProcessFellowshipFrequenciesFutureGap JunctionsGene ExpressionGene Expression ProfileGenus HippocampusGlioblastomaGliomaGoalsHeterogeneityHistone AcetylationHumanHypoxiaImmuneImmunodeficient MouseImmunotherapyIn VitroKnowledgeLeukocytesLinkMacrophageMalignant NeoplasmsMalignant neoplasm of brainMediatingMediatorMentorshipMetabolicMetabolismMicrogliaMitochondriaMitochondrial DNAMitochondrial Proton-Translocating ATPasesMitosisModalityModelingMolecularMorphologyMusNeurogliaNeuronsNon-MalignantOperative Surgical ProceduresOrganellesPathway interactionsPatientsPhasePhenotypePhysiciansPrimary Brain NeoplasmsProcessProliferatingProteinsRadiation therapyRecurrenceReporterResearchResistanceRoleScientistShapesSortingSpecimenStressSupporting CellTestingTherapeuticTrainingTransgenic MiceTumorigenicitybrain cellcancer cellcareercareer developmentcdc Geneschemotherapydesignfluorophoregenetic manipulationin vivoinhibitorinsightknock-downmetabolomicsmolecular targeted therapiesmouse modelneoplastic cellneuraloverexpressionpatient derived xenograft modelprogenitorprogramspurine/pyrimidine metabolismreceptorself-renewalsingle-cell RNA sequencingspatiotemporalstandard carestemstem cellssyncytintherapeutic developmenttherapeutic targettherapy resistanttranscriptome sequencingtumortumor growthtumor metabolismtumor microenvironment
项目摘要
PROJECT SUMMARY: Glioblastoma (GBM) is the most common primary brain tumor and is incurable,
invariably recuring after standard therapy with surgery, chemotherapy and radiation. GBM cell heterogeneity
allows it to thrive in varying adverse conditions in the tumor microenvironment (TME), including therapeutic
insults, hypoxic stress, and immune attack. Interactions with cells in the TME—including neurons, glia,
endothelium, and immune cells—support this heterogeneity and plasticity, contributing to the tumorigenicity,
resistance, and recurrence of this deadly disease. Given the limited efficacy of standard treatment approaches
in GBM, there is an urgent need to decipher and therapeutically target protumorigenic interactions in the TME.
There is evidence that glioma cells form an interconnected network that facilitates the exchange of mitochondria,
which are the main energy-producing organelle and regulate metabolism, proliferation, and epigenetics. There
is also early evidence that mitochondria can be transferred from non-malignant cells to cancer cells. However,
there is limited understanding of mitochondrial transfer dynamics from the TME to GBM; the
mechanisms that govern this transfer; and the downstream effects of transfer on recipient GBM cells.
Addressing this knowledge gap is vital for designing therapeutics that target this interaction. I hypothesize that
mitochondria are transferred from neural cells in the TME to GBM by the action of fusogenic proteins, and that
this transfer drives tumorigenicity by metabolic and epigenetic reprogramming. Specific Aim 1 will test the
hypothesis that astrocytes are the predominant mitochondrial donors, and that transfer is mediated by fusogenic
proteins termed syncytins. I will investigate mitochondrial donor identity using transgenic mice and cell models
expressing lineage-specific mitochondrial fluorophores. I will test how knockdown and overexpression of
syncytins affects rate and protumorigenic effects of transfer from astrocytes to GBM cells. Specific Aim 2 will
test the hypothesis that mitochondrial transfer from astrocytes drives GBM proliferation and tumorigenicity by
metabolic and epigenetic reprogramming. I will investigate how transfer of ATP-synthase with mitochondria
drives tumorigenicity; how mitochondrial transfer results in plasticity of GBM heterogeneity by global metabolic
reprogramming; and how mitochondrial transfer drives proliferation by epigenetic reprogramming and increased
chromatin accessibility. Career development and long-term objectives: I will receive training in cancer
metabolism and brain tumor research, and interact with a mentorship committee of experts from both fields. This
training and the proposed studies are invaluable for my career goal of establishing an independent research
program with the following long-term objectives: (a) elucidate molecular mechanisms of how mitochondrial
transfer reprograms metabolism and epigenetics, (b) develop therapeutics targeting mitochondrial transfer and
its downstream effects, (c) investigate how metabolic interactions in the TME impact other treatment modalities,
including chemotherapy, radiotherapy, and immunotherapy in GBM and other cancers.
项目概述:胶质母细胞瘤(GBM)是最常见的原发性脑肿瘤,无法治愈,
在手术、化疗和放疗的标准治疗后总是复发。GBM细胞异质性
使其能够在肿瘤微环境(TME)中的各种不利条件下茁壮成长,包括治疗性
损伤缺氧应激和免疫攻击与TME中的细胞相互作用-包括神经元,神经胶质,
内皮细胞和免疫细胞支持这种异质性和可塑性,有助于致瘤性,
耐药性和这种致命疾病的复发。鉴于标准治疗方法的疗效有限
在GBM中,迫切需要破译和治疗靶向TME中的促肿瘤发生相互作用。
有证据表明,神经胶质瘤细胞形成了一个相互连接的网络,促进了线粒体的交换,
其是主要的能量产生细胞器并调节代谢、增殖和表观遗传学。那里
也是线粒体可以从非恶性细胞转移到癌细胞的早期证据。然而,在这方面,
对从TME到GBM的线粒体转移动力学的理解有限;
控制这种转移的机制;以及转移对受体GBM细胞的下游影响。
解决这一知识差距对于设计针对这种相互作用的治疗方法至关重要。我假设
线粒体通过融合蛋白的作用从TME中的神经细胞转移到GBM,
这种转移通过代谢和表观遗传重编程驱动致瘤性。具体目标1将测试
假设星形胶质细胞是主要的线粒体供体,并且转移是由融合介导的,
称为合胞素的蛋白质。我将使用转基因小鼠和细胞模型研究线粒体供体的身份
表达谱系特异性线粒体荧光团。我将测试敲除和过度表达
合胞素影响从星形胶质细胞转移到GBM细胞的速率和促肿瘤发生作用。具体目标2将
检验星形胶质细胞线粒体转移驱动GBM增殖和致瘤性的假设,
代谢和表观遗传重编程。我将研究ATP合酶如何通过线粒体
驱动致瘤性;线粒体转移如何通过全局代谢导致GBM异质性的可塑性
以及线粒体转移如何通过表观遗传重编程驱动增殖,
染色质可及性职业发展及长远目标:我将接受癌症方面的培训
代谢和脑肿瘤研究,并与来自这两个领域的专家指导委员会互动。这
培训和拟议的研究是非常宝贵的,我的职业目标,建立一个独立的研究
该计划具有以下长期目标:(a)阐明线粒体如何
转移重编程代谢和表观遗传学,(B)开发靶向线粒体转移的治疗剂,
其下游效应,(c)研究TME中的代谢相互作用如何影响其他治疗方式,
包括化疗、放疗和免疫治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dionysios C Watson其他文献
Dionysios C Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
- 批准号:
EP/Y000331/1 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
- 批准号:
478927 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
- 批准号:
10855703 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
- 批准号:
10654210 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别: