Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
基本信息
- 批准号:10579895
- 负责人:
- 金额:$ 31.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAntineoplastic AgentsBig DataBiologicalCancer PatientCancer cell lineCell modelCell physiologyCellsChemicalsDataDiseaseEventGene ExpressionGeneticGenetic TranscriptionGrainHumanImmune EvasionImmunotherapyIndividualInformation TheoryInterventionKnowledgeLearningLibrariesMalignant NeoplasmsMapsMessenger RNAMethodologyMicroRNAsMiningModelingMolecularMonitorNatureNetwork-basedOrganoidsOutcomePaperPathologicPathway interactionsPatientsPhenotypePhysiologicalPublishingResearchResearch PersonnelSideSignal PathwaySignal TransductionSignaling MoleculeStructureSystemSystems BiologyTechniquesTechnologyThe Cancer Genome AtlasTrainingTranslational ResearchUnited States National Institutes of HealthYeastsbiological systemscancer cellcancer therapycell behaviordata modelingdeep field surveydeep learningdeep learning algorithmdeep learning modeldesigndrug sensitivityexperiencegenome-wideinnovationinquiry-based learninginsightlearning algorithmlearning strategymachine learning algorithmmachine learning methodnovelpharmacologicpre-clinicalprecision medicineprecision oncologypredicting responsepreventresponsesingle-cell RNA sequencingsuccesstheoriestooltranscription factortranscriptometranscriptomicstranslational applicationstranslational impacttranslational medicinetransmission processtreatment responsetumortumor microenvironment
项目摘要
Understanding the state of cellular signaling systems provides insights to how cells behave under physiological
and pathological conditions. Cellular signaling systems are organized as hierarchy (cascade) and signals of a
molecular is often compositionally encoded to control cellular processes, such as gene expression. This
project aims to develop advanced deep learning models (DLMs) to simulate cellular signaling systems based
on gene expression data. In last 3 years, the project has made significant progresses, but the challenges
remain. Importantly, contemporary DLMs behave as “black boxes”, in that it is difficult to interpret how signals
are encoded and how to interpret which signal a hidden node represent in a DLM. This black-box nature
prevents researchers from gaining biological insights using DLMs, even though these models can be much
superior in modeling data than other types of models in many tasks, e.g., predicting drug sensitivity of cancer
cells. In this competitive renewal, we propose to develop novel DLMs and innovative inference algorithms to
train “interpretable” DLMs and apply them in translational research. The proposed research is innovative and
of high significance in several perspectives: 1) Our novel DLMs and algorithms take advantage of big data
resulting from systematic chemical/genetic perturbations of cellular signaling machinery, so that we can use
the perturbation condition as side information to reveal how signals are encoded in a DLM. 2) We integrate
principles of causal inference and information theory with deep learning method to make DLMs interpretable.
As results, that researchers can gain mechanistic insights from such models. 3) Innovative application of
interpretable DLMs will advance translational research. For example, we will train interpretable DLMs to model
cellular signaling at the level of single cells and use this information investigate inter-cellular interactions
among cells in tumor microenvironment to shed light on immune evasion mechanisms of cancers. We will also
use information derived from interpretable DLMs to predict cancer cell drug sensitivity. We anticipate that our
study will bring forth significant advances not only in deep learning methodology but also in precision medicine.
了解细胞信号系统的状态可以深入了解细胞在生理条件下的行为。
和病理条件。细胞信号系统被组织为层次结构(级联)和信号的一个
分子通常在组成上编码以控制细胞过程,例如基因表达。这
该项目旨在开发先进的深度学习模型(DLM),以模拟基于
基因表达数据。在过去的3年里,该项目取得了重大进展,但挑战
保持。重要的是,当代的DLMs表现为“黑匣子”,因为很难解释信号是如何产生的。
以及如何解释隐藏节点在DLM中表示哪个信号。这种黑箱性质
阻止研究人员使用DLMs获得生物学见解,即使这些模型可能非常复杂,
在许多任务中上级其他类型的模型,例如,预测癌症的药物敏感性
细胞在这个竞争性的更新,我们建议开发新的DLMs和创新的推理算法,
训练“可解释的”DLM并将其应用于翻译研究。拟议的研究具有创新性,
在几个方面具有重要意义:1)我们的新型DLM和算法利用大数据
由于细胞信号机制的系统性化学/遗传扰动,因此我们可以使用
扰动条件作为边信息,以揭示信号如何在DLM中编码。2)我们整合
因果推理和信息理论的原理与深度学习方法,使DLM可解释。
因此,研究人员可以从这些模型中获得机理的见解。3)创新应用
可解释的DLM将促进翻译研究。例如,我们将训练可解释的DLM来建模
在单细胞水平上的细胞信号传导,并利用这些信息研究细胞间的相互作用
在肿瘤微环境中的细胞之间,以阐明癌症的免疫逃避机制。我们还将
使用来自可解释的DLMs的信息来预测癌细胞药物敏感性。我们预计,
这项研究不仅将在深度学习方法学方面取得重大进展,还将在精准医学方面取得重大进展。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward multimodal signal detection of adverse drug reactions.
- DOI:10.1016/j.jbi.2017.10.013
- 发表时间:2017-12
- 期刊:
- 影响因子:4.5
- 作者:Harpaz R;DuMouchel W;Schuemie M;Bodenreider O;Friedman C;Horvitz E;Ripple A;Sorbello A;White RW;Winnenburg R;Shah NH
- 通讯作者:Shah NH
A signal-based method for finding driver modules of breast cancer metastasis to the lung.
一种基于信号的方法,用于发现肺癌转移的驱动器模块。
- DOI:10.1038/s41598-017-09951-2
- 发表时间:2017-08-30
- 期刊:
- 影响因子:4.6
- 作者:Yan G;Chen V;Lu X;Lu S
- 通讯作者:Lu S
A Novel Bayesian Framework Infers Driver Activation States and Reveals Pathway-Oriented Molecular Subtypes in Head and Neck Cancer.
- DOI:10.3390/cancers14194825
- 发表时间:2022-10-03
- 期刊:
- 影响因子:5.2
- 作者:Liu, Zhengping;Cai, Chunhui;Ma, Xiaojun;Liu, Jinling;Chen, Lujia;Lui, Vivian Wai Yan;Cooper, Gregory F.;Lu, Xinghua
- 通讯作者:Lu, Xinghua
Leveraging MEDLINE indexing for pharmacovigilance - Inherent limitations and mitigation strategies.
- DOI:10.1016/j.jbi.2015.08.022
- 发表时间:2015-10
- 期刊:
- 影响因子:4.5
- 作者:Winnenburg R;Sorbello A;Ripple A;Harpaz R;Tonning J;Szarfman A;Francis H;Bodenreider O
- 通讯作者:Bodenreider O
Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model.
- DOI:10.3390/cancers15153857
- 发表时间:2023-07-29
- 期刊:
- 影响因子:5.2
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XINGHUA LU其他文献
XINGHUA LU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XINGHUA LU', 18)}}的其他基金
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10371139 - 财政年份:2015
- 资助金额:
$ 31.37万 - 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10171908 - 财政年份:2015
- 资助金额:
$ 31.37万 - 项目类别:
Deciphering cellular signaling system by deep mining a comprehensive genomic compendium
通过深入挖掘全面的基因组纲要来破译细胞信号系统
- 批准号:
9042426 - 财政年份:2015
- 资助金额:
$ 31.37万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8202896 - 财政年份:2011
- 资助金额:
$ 31.37万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8714053 - 财政年份:2011
- 资助金额:
$ 31.37万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8326650 - 财政年份:2011
- 资助金额:
$ 31.37万 - 项目类别:
MODELING ROLES OF BIOACTIVE LIPIDS IN GENE EXPRESSION SYSTEMS
生物活性脂质在基因表达系统中的作用建模
- 批准号:
7959967 - 财政年份:2009
- 资助金额:
$ 31.37万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.37万 - 项目类别:
Research Grant