Statistical methods for integromics discoveries
整合组学发现的统计方法
基本信息
- 批准号:8131525
- 负责人:
- 金额:$ 32.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant):
Contemporary systems biology is shifting the paradigm of biomedical research from minimalistic studies of individual genes/proteins to integration of information at systems level. Current high throughput biotechnologies enable collection of a large amount of biological information, and the different aspects of the cellular systems are reflected with heterogeneous data, e.g., genomics, epigenomics, transcriptomics and metabolomics. However, it remains a major challenge to systematically integrate this body of information and derive biological insights at a mechanistic level. The overarching goal of this project is to develop a computational system that enables integration of various high throughput "omics" data (an "integromics" approach) to gain insights into cellular systems, in particular the signal transduction systems. The activities of the project are organized into four specific aims, which progress from approaches for capturing general information among the multiple omics data to more specific and complex models designed to decipher specific cellular signaling systems. Firstly, we will develop a general framework, based on information theory and probabilistic models, to identify information modules that convey biological information between different "omics" data at large scale. Secondly, we develop methods to further investigate if the information from the multiple omics data reflects causal relationships. Thirdly, we will develop tools to recover missing information from the system to augment the high throughput technologies. Finally, we will develop a unified model to elucidate signal transduction pathways by integrating information form multiple omics data in manner that is both biologically sensible and mathematically rigorous. We expect that the methodologies developed in the project are widely applicable to study a variety of cellular signal transduction systems.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XINGHUA LU其他文献
XINGHUA LU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XINGHUA LU', 18)}}的其他基金
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10579895 - 财政年份:2015
- 资助金额:
$ 32.62万 - 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10371139 - 财政年份:2015
- 资助金额:
$ 32.62万 - 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10171908 - 财政年份:2015
- 资助金额:
$ 32.62万 - 项目类别:
Deciphering cellular signaling system by deep mining a comprehensive genomic compendium
通过深入挖掘全面的基因组纲要来破译细胞信号系统
- 批准号:
9042426 - 财政年份:2015
- 资助金额:
$ 32.62万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8202896 - 财政年份:2011
- 资助金额:
$ 32.62万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8714053 - 财政年份:2011
- 资助金额:
$ 32.62万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8326650 - 财政年份:2011
- 资助金额:
$ 32.62万 - 项目类别:
MODELING ROLES OF BIOACTIVE LIPIDS IN GENE EXPRESSION SYSTEMS
生物活性脂质在基因表达系统中的作用建模
- 批准号:
7959967 - 财政年份:2009
- 资助金额:
$ 32.62万 - 项目类别:
相似国自然基金
莱菔硫烷经胆汁酸及其受体调控肠道巨噬细胞极化改善溃疡性结肠炎作用机制研究
- 批准号:MS25H260021
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
FGF21通过CTL1介导的胆碱稳态调控线粒体自噬对帕金森病的保护机制研究
- 批准号:MS25H310003
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
受分数布朗运动驱动的多值随机微分方程动力学行为研究
- 批准号:QN25A010002
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
几类离散概率模型的长时间行为
- 批准号:QN25A010006
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
随机非局部全变差流的适定性及长时间行为
- 批准号:QN25A010014
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
度量测度空间上基于狄氏型和p-energy型的热核理论研究
- 批准号:QN25A010015
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
两类拟线性Schrödinger方程正规化解的存在性与多重性研究
- 批准号:QN25A010018
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
两类高斯过程驱动的混杂自交互扩散的长时间行为研究
- 批准号:QN25A010030
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度学习的滤泡性甲状腺癌术前智能诊断模型研究
- 批准号:QN25A010034
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
流场中多尺度Pull型自驱动颗粒聚集行为的研究
- 批准号:QN25A020005
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
- 批准号:
MR/Z503770/1 - 财政年份:2024
- 资助金额:
$ 32.62万 - 项目类别:
Research Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
- 批准号:
DP240100143 - 财政年份:2024
- 资助金额:
$ 32.62万 - 项目类别:
Discovery Projects
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
- 批准号:
24K16343 - 财政年份:2024
- 资助金额:
$ 32.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Practical algorithms and high dimensional statistical methods for multimodal haplotype modelling
职业:多模态单倍型建模的实用算法和高维统计方法
- 批准号:
2239870 - 财政年份:2023
- 资助金额:
$ 32.62万 - 项目类别:
Standard Grant
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
- 批准号:
10594266 - 财政年份:2023
- 资助金额:
$ 32.62万 - 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 32.62万 - 项目类别:
Statistical Methods for Response Process Data
响应过程数据的统计方法
- 批准号:
2310664 - 财政年份:2023
- 资助金额:
$ 32.62万 - 项目类别:
Continuing Grant
Statistical Methods for Next Generation Genome-Wide Association Studies
下一代全基因组关联研究的统计方法
- 批准号:
FT220100069 - 财政年份:2023
- 资助金额:
$ 32.62万 - 项目类别:
ARC Future Fellowships
Statistical Methods for Biomarkers Identification Using High-resolution Diffusion MRI
使用高分辨率扩散 MRI 识别生物标志物的统计方法
- 批准号:
10667994 - 财政年份:2023
- 资助金额:
$ 32.62万 - 项目类别:
Statistical methods to understand changes in dietary patterns over time and cardiovascular disease risk among understudied populations
了解受研究人群饮食模式随时间变化和心血管疾病风险的统计方法
- 批准号:
10571108 - 财政年份:2023
- 资助金额:
$ 32.62万 - 项目类别:














{{item.name}}会员




