Deciphering cellular signaling system by deep mining a comprehensive genomic compendium
通过深入挖掘全面的基因组纲要来破译细胞信号系统
基本信息
- 批准号:9042426
- 负责人:
- 金额:$ 32.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBig DataBioinformaticsBiological AssayBiomedical ResearchBiotechnologyBreast Cancer PatientCancer PatientCancer cell lineCaringCell LineCellsCellular biologyClinicalCollectionComputational algorithmDNA Sequence AlterationDataDatabasesDiabetes MellitusDisciplineDiseaseDisease PathwayDrug effect disorderEnvironmentExhibitsExperimental DesignsFunctional disorderGene ExpressionGene Expression ProfileGene Expression ProfilingGene ProteinsGenesGenetic TranscriptionGenomeGenomicsHomeostasisHumanIndividualInterdisciplinary StudyInternationalKnowledgeLeadLearningMachine LearningMalignant NeoplasmsMapsMeasurementMeasuresMedicineMiningModelingOutcomePathway interactionsPatientsPharmaceutical PreparationsPharmacologyPharmacotherapyPhysiologicalPlayProteinsRoleSamplingSignal PathwaySignal TransductionSignaling ProteinStatistical ModelsSystemTestingThe Cancer Genome AtlasTimeTrainingabstractingcancer genomecancer subtypesdata miningdata to knowledgedesigndrug mechanismdrug sensitivityenvironmental changegenome-widegenomic datainsightnovelpersonalized medicineresearch studyresponsesupercomputertranslational medicinetranslational study
项目摘要
DESCRIPTION (provided by applicant):
Cellular signal transduction system (CSTS) plays a fundamental role in maintaining homeostasis of a cell, and perturbations of CSTS lead to diseases such as cancers and diabetes. Most of cellular signaling pathways eventually regulate gene expression, thus the latter can be used as a universal bioassay reflecting the state of CSTS. However, the gene expression profile from a cell reflects a mixture of responses to all active signaling pathways, thus it is a challenge to de-convolute the signals embedded in the gene expression data. With advent of high throughput biotechnology, major public databases host the results of millions of gene expression assays, collected under diverse diseases as well as the experimental conditions designed by experimental biologists to probe almost all aspects of CSTS. The wealth of these big data provides unprecedented opportunities to investigate CSTS under physiological and pathological conditions, but it also poses unprecedented challenges: how to reveal signals from convoluted data and turn big data into knowledge. We hypothesize that given a sufficiently large compendium of gene expression data collected under diverse conditions, in which different parts of CSTS are perturbed (either by designed experiments or by diseases), the cellular signals embedded in the gene expression data can be revealed and their organization can inferred using current state-of-the-art "deep learning" models. In this project, we will compil a comprehensive compendium of human gene expression data and then employ modern deep-learning algorithms and supercomputers to mine the data. We aim to reveal major cellular signals that regulate gene expression under physiological and pathological conditions and to infer the organization of signals in human CSTS. Combined the identified signals with genomic alteration data and drug response data, we aim to further identify pathways underlying disease such as cancers, to use the genomic data to predict drug sensitivity of cancer cell lines, and to predict patient clinical outcomes, in a pathway-centered manner.
描述(由申请人提供):
细胞信号转导系统(Cellular Signal Transduction System,CSTS)在维持细胞内环境稳定中起着重要的作用,CSTS的紊乱会导致癌症、糖尿病等疾病的发生。大多数细胞信号通路最终调节基因表达,因此后者可以作为反映CSTS状态的通用生物测定。然而,来自细胞的基因表达谱反映了对所有活性信号传导途径的反应的混合物,因此对嵌入在基因表达数据中的信号进行去卷积是一个挑战。随着高通量生物技术的出现,主要的公共数据库托管了数百万个基因表达测定的结果,这些结果是在各种疾病以及实验生物学家设计的实验条件下收集的,以探测CSTS的几乎所有方面。这些丰富的大数据为研究生理和病理条件下的CSTS提供了前所未有的机会,但也带来了前所未有的挑战:如何从错综复杂的数据中揭示信号,并将大数据转化为知识。我们假设,给定在不同条件下收集的足够大的基因表达数据概要,其中CSTS的不同部分受到干扰(无论是通过设计的实验还是疾病),嵌入基因表达数据中的细胞信号可以被揭示,并且可以使用当前最先进的“深度学习”模型推断它们的组织。在这个项目中,我们将编译一个人类基因表达数据的综合纲要,然后使用现代深度学习算法和超级计算机来挖掘数据。我们的目标是揭示在生理和病理条件下调节基因表达的主要细胞信号,并推断人类CSTS中的信号组织。将识别的信号与基因组改变数据和药物反应数据相结合,我们的目标是进一步识别疾病(如癌症)的潜在途径,使用基因组数据预测癌细胞系的药物敏感性,并以途径为中心的方式预测患者的临床结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XINGHUA LU其他文献
XINGHUA LU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XINGHUA LU', 18)}}的其他基金
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10579895 - 财政年份:2015
- 资助金额:
$ 32.82万 - 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10371139 - 财政年份:2015
- 资助金额:
$ 32.82万 - 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10171908 - 财政年份:2015
- 资助金额:
$ 32.82万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8202896 - 财政年份:2011
- 资助金额:
$ 32.82万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8714053 - 财政年份:2011
- 资助金额:
$ 32.82万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8326650 - 财政年份:2011
- 资助金额:
$ 32.82万 - 项目类别:
MODELING ROLES OF BIOACTIVE LIPIDS IN GENE EXPRESSION SYSTEMS
生物活性脂质在基因表达系统中的作用建模
- 批准号:
7959967 - 财政年份:2009
- 资助金额:
$ 32.82万 - 项目类别:
相似海外基金
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2022
- 资助金额:
$ 32.82万 - 项目类别:
Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
- 批准号:
RGPIN-2020-04075 - 财政年份:2022
- 资助金额:
$ 32.82万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2022
- 资助金额:
$ 32.82万 - 项目类别:
Discovery Grants Program - Individual
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
- 批准号:
RGPIN-2022-02948 - 财政年份:2022
- 资助金额:
$ 32.82万 - 项目类别:
Discovery Grants Program - Individual
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2022
- 资助金额:
$ 32.82万 - 项目类别:
Discovery Grants Program - Individual
NCS-FO: Connectome mapping algorithms with application to community services for big data neuroscience
NCS-FO:连接组映射算法及其应用于大数据神经科学社区服务
- 批准号:
2203524 - 财政年份:2021
- 资助金额:
$ 32.82万 - 项目类别:
Standard Grant
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2021
- 资助金额:
$ 32.82万 - 项目类别:
Discovery Grants Program - Individual
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
- 批准号:
21K12034 - 财政年份:2021
- 资助金额:
$ 32.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comprehensive study of big data clustering algorithms
大数据聚类算法综合研究
- 批准号:
571110-2018 - 财政年份:2021
- 资助金额:
$ 32.82万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2021
- 资助金额:
$ 32.82万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




