A New Approach to Study Mechanically Activated Ion Channels
研究机械激活离子通道的新方法
基本信息
- 批准号:10242489
- 负责人:
- 金额:$ 130.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AtherosclerosisBiologicalBiological AssayBiophysicsBlood flowCalciumCell membraneCellsDiseaseEarElectrophysiology (science)EnvironmentEventFamilyFeathersGlassHearingHumanImageIn VitroIon ChannelLeadLightLipidsMeasurementMechanical StimulationMechanicsMembraneMethodsMolecularMuscle ContractionMuscular DystrophiesOpticsOrganellesPathologicPharmacologyPharmacology StudyPhysiologicalPhysiological ProcessesProcessPropertyProteinsRoleSignal TransductionSkinStimulusStretchingStructureTechniquesTissuesTouch sensationWorkazobenzeneblood pressure regulationchronic paincis trans isomerizationin vivoinnovationmechanical forcemechanotransductionnovelnovel strategiespain sensationpressuresoundvibration
项目摘要
Project summary.
Some proteins have the unique ability to sense and respond to mechanical force, a process called
mechanotransduction, and can confer mechanosensitivity to cells, tissue, or organelles that express them.
Sound waves in the ear, caress of a feather on the skin, or blood flow in arterial vessels are some instances
where a force-inducing stimulus such as vibration, pressure, or stretch activates mechanically activated (MA) ion
channels that initiate a cascade of events allowing the body to hear, sense touch, or regulate blood pressure. In
the past decade, identification of novel MA ion channels like PIEZOs, K2Ps, TMCs, and OSCA/TMEM63s has
revealed their importance in many physiological processes, but mechanistic details of how these channels sense
force is, strikingly, incomplete. A major challenge impeding the field in comprehending MA channel gating
mechanisms is the lack of a channel activation method that faithfully replicates the transduction of force, within
a physiological environment. This proposal aims to apply photoswitchable lipids as a new and innovative method
to assay mechanically activated (MA) ion channels, which will facilitate the study of these channels with greater
ease, precision, and detail.
In vivo, mechanical stimulation exerts force, which alters tension within the cell membrane where
mechanosensitive proteins reside. MA ion channels detect this change in membrane tension leading to channel
activation. Traditional in vitro techniques to activate MA channels are rather crude including pushing on
membrane with a blunt glass probe or stretching the membrane by applying pressure. Although these techniques
to alter membrane tension have enabled measurement of MA channel activity, they are indirect, low-throughput,
and poorly mimic physiological stimuli. Here I propose to modulate membrane tension by directly targeting lipids
that encompass the channel using photoswitchable lipids (or photolipids). Incorporation of the photochromic
molecule azobenzene into fatty acyl chains provides optical control over lipids as they undergo cis-trans
isomerization when irradiated with UV-A and blue light. Therefore, azobenzene-modified lipids can be used to
reversibly manipulate membrane structure with light, which can either directly activate or modulate MA ion
channel activity. Using the bona-fide MA ion channel family OSCAs we will screen and optimize photolipids to
selectively change membrane properties on a cellular scale and assay MA channel activity with electrophysiology
and/or calcium imaging. This unique strategy will be combined with structural, functional, and pharmacological
studies to gain a better perspective on the cellular and molecular underpinnings of MA ion channel functions.
Ultimately, this work will also lead to a deeper mechanistic understanding of mechanotransduction processes
that drive vital physiological and pathological states in humans.
项目总结。
一些蛋白质具有感知机械力并对其做出反应的独特能力,这一过程称为
机械转导,并能赋予细胞、组织或表达它们的细胞器机械敏感性。
例如,耳朵里的声波,皮肤上的羽毛抚摸,或者动脉血管中的血液流动
力诱导刺激,如振动、压力或拉伸,会激活机械激活(MA)离子
启动一系列事件的通道,使身体能够听到、感觉到触摸或调节血压。在……里面
在过去的十年中,发现了新的MA离子通道,如PIEZO,K2Ps,TMCs和OSCA/TMEM63s
揭示了它们在许多生理过程中的重要性,但这些通道如何意义的机械性细节
令人惊讶的是,武力是不完整的。阻碍该领域理解移动通信信道门控的主要挑战
机制是缺乏一种忠实地复制内力传递的通道激活方法
生理环境。这项提议旨在应用可光开关脂质作为一种新的创新方法。
测定机械激活(MA)离子通道,这将有助于对这些通道进行更多的研究
轻松、精确和细节。
在体内,机械刺激施加力,改变细胞膜内的张力,
对机械敏感的蛋白质存在。MA离子通道检测到导致通道的膜张力的这种变化
激活。传统的激活MA通道的体外技术相当粗糙,包括推动
用钝的玻璃探头或通过施加压力拉伸膜。尽管这些技术
改变膜张力使得能够测量MA通道活性,它们是间接、低通量、
对生理刺激的模仿能力很差。在这里,我建议通过直接靶向脂类来调节膜张力
使用可光切换的脂类(或光脂)包围通道。光致变色剂的掺入
脂肪酰链上的偶氮苯分子在脂类发生顺式反式反应时提供光学控制
在UV-A和蓝光照射下发生异构化。因此,偶氮苯修饰的脂类可用于
用光可逆操纵膜结构,可直接激活或调制MA离子
通道活动。使用真正的MA离子通道家族OSCA,我们将筛选和优化光脂以
在细胞尺度上有选择地改变膜的性质,并用电生理学方法测定MA通道的活性
和/或钙成像。这一独特的策略将与结构、功能和药理学相结合
研究以更好地了解MA离子通道功能的细胞和分子基础。
最终,这项工作还将导致对机械转导过程的更深层次的机械理解
会导致人类的重要生理和病理状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Swetha Murthy其他文献
Swetha Murthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 130.5万 - 项目类别:
Research Grant














{{item.name}}会员




