Multimodality imaging-driven multifidelity modeling of aortic dissection
多模态成像驱动的主动脉夹层多保真建模
基本信息
- 批准号:10242915
- 负责人:
- 金额:$ 55.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-05 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnimal ExperimentsAnimal ModelAortaAortic RuptureArteriesAttentionBiologicalBiomechanicsBiomedical EngineeringBloodBlood VesselsBlunt TraumaCarotid ArteriesCategoriesCervicalCessation of lifeChargeChestChildChronicClinicalCoagulation ProcessCollaborationsCommunitiesComputer ModelsCouplingDataDefectDepositionDevelopmentDiagnostic ImagingDilatation - actionDiseaseDissectionElderlyEventFoundationsGeometryGlycosaminoglycansGoalsHeritabilityHumanHypertensionImageImaging TechniquesIn VitroIndividualInfusion proceduresInterventionKnowledgeLeadLesionLong-Term EffectsMachine LearningMechanicsMedical ImagingMethodsModelingMonitorMorbidity - disease rateMotivationMultimodal ImagingOperative Surgical ProceduresOptical Coherence TomographyOutcomePhasePhenotypePlatelet aggregationPlayPositioning AttributePreventionProcessPrognosisPropertyResearchResolutionRisk FactorsRoleRuptureSchemeSiteSolidStatistical ModelsTestingThoracic aortaThrombusTimeTrainingTunica AdventitiaUltrasonographyUncertaintyVideo MicroscopyWorkascending aortabasedigital imagingdisabilityexperimental studyhealinghemodynamicsimprovedin silicoin vivoinsightintracranial arterymicroSPECTmortalitymouse modelmucoidmulti-scale modelingmultiple omicsnormotensivenovelnovel strategiesparticlepredictive modelingpublic health relevancespatiotemporalsupervised learningtoolvirtualyoung adult
项目摘要
PROJECT SUMMARY. Aortic dissections are responsible for significant morbidity and mortality in young and
old individuals alike. Whereas type A (ascending aorta) dissections are treated aggressively via surgery, type B
(descending thoracic aorta) dissections are often monitored for long periods to determine the best treatment.
These lesions can cease to propagate (i.e., stabilize or heal) or they can propagate further and either turn
inward and connect again with the true lumen to form a re-entry tear or turn outward and result in rupture in the
case of an compromised adventitia. Notwithstanding the importance of these later events, there is a pressing
need to understand better the early processes that initiate the dissection and drive its initial propagation as well
as to determine whether the presence of intramural thrombus is protective or not against early or continued
propagation. Over the past 5 years our collaborative team has developed numerous new multimodality imaging
techniques, biomechanical testing methods, and computational modeling approaches across multiple scales
that uniquely positions us to understand better the process of early aortic dissection and the possible
roles played by early intramural thrombus development. In this project, we propose to use nine
complementary mouse models to gain broad understanding of the bio-chemo-mechanical processes that lead
to aortic dissection and to introduce a new machine learning based multifidelity modeling approach to develop
predictive probabilistic multiscale models of dissection. These models will be informed, trained, and validated
via data obtained from a combination of unique in vitro biomechanical phenotyping experiments (wherein we
can, for the first time, quantify the initial delamination process under well-controlled conditions and regional
material properties thereafter) and novel multimodality imaging of delamination / dissection both in vitro and in
vivo. We will consider, for example, the roles of different elastic lamellar geometries; we will assess separate
roles of focal proteolytic activation and pooling of highly negatively charged mucoid material, which can
degrade or swell the wall respectively; and we will model and assess the effects of early thrombus deposition
within a false lumen. We submit that our new probabilistic paradigm, based on statistical autoregressive
schemes and enabled by machine learning tools, could be transformative and lead to a paradigm shift in
disease prediction where historical data, animal experiments, and limited clinical input (e.g., multiomics) can be
used synergistically for robust prognosis and thus interventional planning. Our work is also expected to lead
naturally to an eventual better understanding of the chronic processes associated with dissection via predictive
models that are aided by the expected “revolution of resolution” in diagnostic imaging.
项目摘要。主动脉夹层是导致年轻人和老年人显着发病率和死亡率的原因。
老人们都一样。 A 型(升主动脉)夹层可通过手术积极治疗,而 B 型夹层则可通过手术积极治疗。
(胸降主动脉)夹层通常需要长期监测以确定最佳治疗方案。
这些病变可以停止传播(即稳定或愈合),或者可以进一步传播,或者转变为
向内再次与真腔相通,形成再入撕裂或向外翻转,导致真腔破裂。
外膜受损的情况。尽管后来发生的这些事件很重要,但仍有一个紧迫的问题
需要更好地了解启动解剖并驱动其初始传播的早期过程
以确定壁内血栓的存在是否对早期或持续性血栓形成具有保护作用
传播。在过去的 5 年里,我们的协作团队开发了许多新的多模态成像
跨多个尺度的技术、生物力学测试方法和计算建模方法
这使我们能够更好地了解早期主动脉夹层的过程以及可能的情况
早期壁内血栓形成所起的作用。在这个项目中,我们建议使用九个
互补的小鼠模型,以获得对导致的生物化学机械过程的广泛了解
主动脉夹层并引入一种新的基于机器学习的多保真建模方法来开发
解剖的预测概率多尺度模型。这些模型将被告知、训练和验证
通过独特的体外生物力学表型实验组合获得的数据(其中我们
首次可以量化在良好控制的条件和区域下的初始分层过程
材料特性)以及体外和体内分层/解剖的新型多模态成像
体内。例如,我们将考虑不同弹性层状几何形状的作用;我们将单独评估
局部蛋白水解激活和带高负电荷的粘液物质汇集的作用,这可以
分别使墙壁退化或膨胀;我们将模拟并评估早期血栓沉积的影响
假腔内。我们提出,我们的新概率范式基于统计自回归
由机器学习工具支持的计划可能会带来变革,并导致范式转变
可以利用历史数据、动物实验和有限的临床输入(例如多组学)进行疾病预测
协同用于稳健的预后,从而制定干预计划。我们的工作也有望引领
通过预测自然地最终更好地理解与解剖相关的慢性过程
模型得到了诊断成像中预期的“分辨率革命”的帮助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay D. Humphrey其他文献
A Computational Framework to Predict and Understand in situ Heart Valve Tissue Engineering
- DOI:
10.1080/24748706.2021.1900703 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Elmer Middendorp;Marcos Latorre;Jason M. Szafron;Frank P.T. Baaijens;Jay D. Humphrey;Sandra Loerakker - 通讯作者:
Sandra Loerakker
ブレインサイエンス・レビュー2004
脑科学评论 2004
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Daisuke Mori;Guido David;Jay D. Humphrey;James E. Moore Jr.;Miho Terunuma;平田 雅人 - 通讯作者:
平田 雅人
Multi-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension
- DOI:
10.1007/s10439-025-03685-3 - 发表时间:
2025-02-04 - 期刊:
- 影响因子:5.400
- 作者:
Ana C. Estrada;Jay D. Humphrey - 通讯作者:
Jay D. Humphrey
Journal of Mechanics of Materials and Structures SPONTANEOUS UNWINDING OF A LABILE DOMAIN IN A COLLAGEN TRIPLE HELIX
材料与结构力学杂志 胶原三螺旋中不稳定域的自发展开
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Krishnakumar M. Ravikumar;Jay D. Humphrey;Wonmuk Hwang - 通讯作者:
Wonmuk Hwang
Altered mechanical behavior and properties of the human anterior lens capsule after cataract surgery.
白内障手术后人类晶状体前囊的机械行为和特性发生改变。
- DOI:
10.1016/j.exer.2009.06.001 - 发表时间:
2009 - 期刊:
- 影响因子:3.4
- 作者:
R. Pedrigi;J. Dziezyc;Jay D. Humphrey - 通讯作者:
Jay D. Humphrey
Jay D. Humphrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay D. Humphrey', 18)}}的其他基金
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动的设计可减轻冠状动脉搭桥术后静脉移植失败的风险
- 批准号:
10683327 - 财政年份:2022
- 资助金额:
$ 55.94万 - 项目类别:
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动设计减轻冠状动脉搭桥术后静脉移植失败
- 批准号:
10539814 - 财政年份:2022
- 资助金额:
$ 55.94万 - 项目类别:
Modeling Multiscale Immuno-Mechanics in Aortic Disease
主动脉疾病的多尺度免疫力学建模
- 批准号:
10532786 - 财政年份:2022
- 资助金额:
$ 55.94万 - 项目类别:
Modeling Multiscale Immuno-Mechanics in Aortic Disease
主动脉疾病的多尺度免疫力学建模
- 批准号:
10352581 - 财政年份:2022
- 资助金额:
$ 55.94万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10184861 - 财政年份:2020
- 资助金额:
$ 55.94万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10376852 - 财政年份:2019
- 资助金额:
$ 55.94万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10573756 - 财政年份:2019
- 资助金额:
$ 55.94万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10132382 - 财政年份:2019
- 资助金额:
$ 55.94万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 55.94万 - 项目类别:
Research Grant














{{item.name}}会员




