Predicting computations necessary for the decoding of odor mixtures by the olfactory system
嗅觉系统解码气味混合物所需的预测计算
基本信息
- 批准号:10621161
- 负责人:
- 金额:$ 14.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchitectureBehavioralBiologicalBiological ProcessBiophysicsChemicalsComplexComplex MixturesDataEnvironmentIndividualMeasuresModelingNeural Network SimulationNeuronsNorth CarolinaOdorsOlfactory PathwaysOrganismPerformancePhysicsProcessPropertyResearchRoleSensoryStructureSystemTheoretical modelUniversitiesWorkbiological information processingbiological systemscombinatorialcomputerized data processingexperimental studyhigh dimensionalityindividual responseinformation processingneuralolfactory disorderolfactory receptorprogramsreceptorresponsestudent training
项目摘要
Our olfactory system processes complex odor mixtures, drawn from a very high
dimensional space of over 10,000 possible odorants, using a limited set of (~100-1000)
olfactory receptors. While a considerable amount of work has done to understand the
odors are encoded by the olfactory receptors, the inverse problem: “How does the
olfactory system obtain odor information from receptor response?” is unclear. This
project aims to identify the computations that are necessary for the decoding odor
information from receptor responses. We will develop decoding algorithms and
mechanistic neural network models for decoding odor information from receptor
responses. We will study the performance of these algorithms and mechanistic models
and compare their predictions to the structure of the olfactory system and available data
on the performance of organisms in olfactory behavioral tasks. Through such
comparisons, we will identify the specific computations that are necessary for decoding
of natural odors. This would be achieved through the following aims. Aim 1: Develop
algorithms for decoding odor information from receptor responses and compare their
performance to behavioral data. Aim 2: Develop biophysical neural network models the
olfactory system and compare it to odor decoding algorithm to predict role of olfactory circuits.
我们的嗅觉系统处理复杂的气味混合物,来自非常高的
超过10,000种可能气味的维度空间,使用有限的(~100-1000)组
嗅觉受体。虽然已经做了大量的工作来理解
气味是由嗅觉感受器编码的,相反的问题是:“气味是如何
嗅觉系统从感受器的反应中获取气味信息?目前还不清楚。这
该项目旨在确定解码气味所需的计算
来自受体反应的信息。我们将开发解码算法和
感受器气味信息解码的机械神经网络模型
回应。我们将研究这些算法和机制模型的性能
并将他们的预测与嗅觉系统的结构和可用的数据进行比较
关于有机体在嗅觉行为任务中的表现。通过这样的方式
比较,我们将确定解码所需的特定计算
天然气味。这将通过以下目标实现。目标1:发展
用于从受体反应中解码气味信息的算法,并比较它们的
行为数据的性能。目标2:开发生物物理神经网络模型
并将其与气味解码算法进行比较,以预测嗅觉回路的作用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
What the odor is not: Estimation by elimination.
- DOI:10.1103/physreve.104.024415
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Singh V;Tchernookov M;Balasubramanian V
- 通讯作者:Balasubramanian V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vijay Singh其他文献
Vijay Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vijay Singh', 18)}}的其他基金
Predicting computations necessary for the decoding of odor mixtures by the olfactory system
嗅觉系统解码气味混合物所需的预测计算
- 批准号:
10397603 - 财政年份:2021
- 资助金额:
$ 14.4万 - 项目类别:
Proteomic biomarkers for radiation injury and countermeasure efficacy
放射损伤的蛋白质组生物标志物及对策效果
- 批准号:
10723267 - 财政年份:
- 资助金额:
$ 14.4万 - 项目类别:
相似海外基金
The schizophrenia-associated 3q29 deletion: genetic architecture of behavioral phenotypes
精神分裂症相关的 3q29 缺失:行为表型的遗传结构
- 批准号:
10579244 - 财政年份:2023
- 资助金额:
$ 14.4万 - 项目类别:
The schizophrenia-associated 3q29 deletion: genetic architecture of behavioral phenotypes
精神分裂症相关的 3q29 缺失:行为表型的遗传结构
- 批准号:
10382014 - 财政年份:2022
- 资助金额:
$ 14.4万 - 项目类别:
Behavioral analysis of corporate architecture
企业架构的行为分析
- 批准号:
21K01640 - 财政年份:2021
- 资助金额:
$ 14.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-resolution synaptic and functional connectivity mapping of a neural circuit architecture underlying a behavioral sequence
行为序列背后的神经回路架构的高分辨率突触和功能连接映射
- 批准号:
10208363 - 财政年份:2021
- 资助金额:
$ 14.4万 - 项目类别:
The effect of behavioral fear expression on sleep/wake architecture
行为恐惧表达对睡眠/觉醒结构的影响
- 批准号:
18K15345 - 财政年份:2018
- 资助金额:
$ 14.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Behavioral Syndromes as Evolutionary Constraints: the Role of Genetic Architecture
合作研究:作为进化约束的行为综合症:遗传结构的作用
- 批准号:
1557951 - 财政年份:2016
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Collaborative Research: Behavioral Syndromes as Evolutionary Constraints: the Role of Genetic Architecture
合作研究:作为进化约束的行为综合症:遗传结构的作用
- 批准号:
1558069 - 财政年份:2016
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Genomic Architecture Underlying Behavioral Isolation and Speciation
行为隔离和物种形成背后的基因组结构
- 批准号:
1257682 - 财政年份:2013
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Behavioral and Attitudinal changes under choice architecture
选择架构下的行为和态度变化
- 批准号:
25780370 - 财政年份:2013
- 资助金额:
$ 14.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Major Collaborative Proposal: CreativeIT: Understanding the Creative Design Process: A Novel Cognitive Model Based on Behavioral Experiments in Circuit Design and Architecture.
主要合作提案:CreativeIT:理解创意设计过程:基于电路设计和架构行为实验的新颖认知模型。
- 批准号:
0855825 - 财政年份:2009
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant