Determining the explanatory utility of computational reinforcement-learning theories of goal-directed and habitual control at behavioral and neural levels
确定行为和神经层面目标导向和习惯控制的计算强化学习理论的解释效用
基本信息
- 批准号:10620841
- 负责人:
- 金额:$ 55.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-02 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnxietyBehaviorBehavior ControlBehavioralBiological AssayBrainBrain imagingBrain regionCaliforniaClinical assessmentsComplementComputer ModelsCoupledDecision MakingDetectionDiffusion Magnetic Resonance ImagingEquilibriumFunctional Magnetic Resonance ImagingFunctional disorderGoalsHabitsHumanImpulsivityIncentivesIndividualIndividual DifferencesInfluentialsInstitutionLearningMeasuresMental disordersModelingMoodsNatureNeuronsOutcomeParticipantPatient Self-ReportPatientsPatternProcessProcess MeasurePsychiatryPsychological reinforcementPsychopathologyRecording of previous eventsResearchResearch Domain CriteriaRestScanningSignal TransductionSymptomsSystemTechnologyTestingUndifferentiatedVariantbasebehavior measurementcohortcomputer frameworkdesignflexibilitymathematical theoryneuralneuroimagingpsychiatric symptompsychologictheoriestrait
项目摘要
Determining the explanatory utility of computational reinforcement-learning
theories of goal-directed and habitual control at behavioral and neural levels
PI: Dr. John P. O’Doherty
Institution: California Institute of Technology
PROJECT SUMMARY
Accumulating evidence supports the existence of two distinct systems for guiding action-selection in the brain:
a goal-directed system in which actions are selected with reference to the current incentive value of the
associated goal or outcome, and a habitual system in which actions are selected reflexively, based solely on
their history of past reinforcement. A computational account for these two systems has been formulated in
terms of two distinct variants of computational reinforcement-learning (RL) theory: model-based (MB) vs
model-free (MF) RL. Yet, empirical evidence in support of the proposed correspondence between the
psychological (RDoC level) and computational RL accounts are sparse. Here we aim to comprehensively
address whether the RDoC level constructs of goal-directed and habitual control can be effectively described
by the computational framework of model-based and model-free RL in humans at both behavioral and neural
levels.
We plan to administer two distinct behavioral tasks designed to discriminate goal-directed from habitual
control and MB from MF control to a large cohort of healthy participants (n=200) and an undifferentiated cohort
of psychiatric patients (n=100). Our participants will perform these tasks while being scanned with fMRI, in
addition to undergoing resting-state fMRI, and diffusion weighted imaging. We will also measure behavioral
traits and states relevant to psychopathology in the same individuals. We will leverage individual differences
across our behavioral, computational and neural measures in order to determine the extent to which the
psychological constructs and computational accounts are best viewed as being one and the same, or whether
by contrast they diverge in theoretically important ways. Should we detect clear differences between the
psychological (RDoC) constructs and computational descriptions on any of the levels of analysis we utilize, this
will motivate an iterative refinement of the computational framework to better approximate the psychological
(RDoC) level constructs, to be accomplished in parallel to the experimental aims. The distinction between
goals and habits and their proposed computational bases are arguably one of the most influential research
topics in computational psychiatry to date, given the hypothesized relevance of these constructs as a means of
capturing various forms of psychiatric dysfunction. Thus, a better understanding of the nature of the
relationship between these constructs, coupled with a process of active refinement of the computational theory
to achieve a much closer correspondence to the psychological constructs, is going to be critical for progress in
this domain.
确定计算重复学习的解释效用
行为和神经层面的目标导向和习惯控制理论
PI:John P. O'Doherty博士
院校:加州理工学院
项目摘要
越来越多的证据支持大脑中存在两个不同的指导行动选择的系统:
一个目标导向系统,在该系统中,参考当前的激励值来选择行动,
相关的目标或结果,以及一个习惯性的系统,在这个系统中,行动被反射性地选择,仅仅基于
他们过去的强化历史。这两个系统的计算帐户已制定在
计算重复学习(RL)理论的两种不同变体的术语:基于模型(MB)与
无模型(MF)RL。然而,支持所提出的对应关系的经验证据表明,
心理(RDoC级别)和计算RL帐户是稀疏的。在这里,我们的目标是全面
解决是否可以有效地描述目标导向和习惯控制的RDoC级别结构
基于模型和无模型的RL在人类行为和神经上的计算框架
程度.
我们计划管理两个不同的行为任务,旨在区分目标导向和习惯性
对照和MB从MF对照到大型健康参与者队列(n=200)和未分化队列
精神病患者(n=100)。我们的参与者将在接受功能磁共振成像扫描的同时执行这些任务,
除了进行静息态功能磁共振成像和弥散加权成像。我们还将测量行为
与精神病理学相关的特征和状态。我们将利用个体差异
在我们的行为,计算和神经措施,以确定在多大程度上,
心理构造和计算账户最好被看作是同一个,或者
相比之下,它们在理论上的重要方面存在分歧。我们是否应该发现
心理(RDoC)结构和计算描述的任何水平的分析,我们利用,这
将激励计算框架的迭代细化,以更好地近似心理
(RDoC)水平的结构,要完成平行的实验目标。之间的区别
目标和习惯及其提出的计算基础可以说是最有影响力的研究之一,
迄今为止,计算精神病学的主题,假设这些结构的相关性作为一种手段,
捕捉各种形式的精神障碍。因此,更好地了解
这些结构之间的关系,再加上积极完善的计算理论的过程
为了实现更接近的对应心理结构,将是至关重要的进展,
这个域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN P O'DOHERTY其他文献
JOHN P O'DOHERTY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN P O'DOHERTY', 18)}}的其他基金
Probing the neural computations underlying goal-directed decision-making in humans with single-neuron recordings
通过单神经元记录探索人类目标导向决策背后的神经计算
- 批准号:
10717875 - 财政年份:2023
- 资助金额:
$ 55.41万 - 项目类别:
Determining the explanatory utility of computational reinforcement-learning theories of goal-directed and habitual control at behavioral and neural levels
确定行为和神经层面目标导向和习惯控制的计算强化学习理论的解释效用
- 批准号:
10205983 - 财政年份:2019
- 资助金额:
$ 55.41万 - 项目类别:
Determining the explanatory utility of computational reinforcement-learning theories of goal-directed and habitual control at behavioral and neural levels
确定行为和神经层面目标导向和习惯控制的计算强化学习理论的解释效用
- 批准号:
10412091 - 财政年份:2019
- 资助金额:
$ 55.41万 - 项目类别:
Determining the neural substrates of model-based and model-free reinforcement-learning during Pavlovian conditioning (Minority Supplement)
确定巴甫洛夫条件反射期间基于模型和无模型强化学习的神经基础(少数补充)
- 批准号:
9355421 - 财政年份:2016
- 资助金额:
$ 55.41万 - 项目类别:
Determining the neural substrates of model-based and model-free reinforcement-learning during Pavlovian conditioning
确定巴甫洛夫条件反射期间基于模型和无模型强化学习的神经基础
- 批准号:
10117323 - 财政年份:2016
- 资助金额:
$ 55.41万 - 项目类别:
Determining the neural substrates of model-based and model-free reinforcement-learning during Pavlovian conditioning
确定巴甫洛夫条件反射期间基于模型和无模型强化学习的神经基础
- 批准号:
9106549 - 财政年份:2016
- 资助金额:
$ 55.41万 - 项目类别:
Project 1 - The Neurobiology of Social Decision-Making: Social Inference and Context
项目 1 - 社会决策的神经生物学:社会推理和背景
- 批准号:
9278567 - 财政年份:2012
- 资助金额:
$ 55.41万 - 项目类别:
Characterizing habitual and goal-directed behavioral control systems in the human
表征人类习惯性和目标导向的行为控制系统
- 批准号:
8448779 - 财政年份:2011
- 资助金额:
$ 55.41万 - 项目类别:
Characterizing habitual and goal-directed behavioral control systems in the human
表征人类习惯性和目标导向的行为控制系统
- 批准号:
8174617 - 财政年份:2011
- 资助金额:
$ 55.41万 - 项目类别:
Characterizing habitual and goal-directed behavioral control systems in the human
表征人类习惯性和目标导向的行为控制系统
- 批准号:
8303192 - 财政年份:2011
- 资助金额:
$ 55.41万 - 项目类别:
相似海外基金
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
- 批准号:
480808 - 财政年份:2023
- 资助金额:
$ 55.41万 - 项目类别:
Miscellaneous Programs
Function of cost bias and effect of cognitive behavior therapy on social anxiety in children and adolescents
成本偏差的作用及认知行为治疗对儿童青少年社交焦虑的影响
- 批准号:
23K02970 - 财政年份:2023
- 资助金额:
$ 55.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Randomized Clinical Trial Comparing Transdiagnostic Behavior Therapy to Disorder-Specific Psychotherapy in the Recovery of Veterans with Social Anxiety Disorder and Comorbid PTSD Symptomatology
一项随机临床试验,比较跨诊断行为疗法与特定障碍心理疗法在患有社交焦虑症和共病 PTSD 症状的退伍军人康复中的作用
- 批准号:
10746930 - 财政年份:2023
- 资助金额:
$ 55.41万 - 项目类别:
Alcohol exposure exacerbates inflammation and anxiety-like behavior induced by repeated mild TBI during adolescence
酒精暴露会加剧青春期期间反复轻度 TBI 引起的炎症和焦虑样行为
- 批准号:
10605755 - 财政年份:2022
- 资助金额:
$ 55.41万 - 项目类别:
The Effects of Exercise on Stressful Depression and Anxiety Like Behavior via gut microbiota
运动通过肠道微生物群对压力性抑郁和焦虑样行为的影响
- 批准号:
22K11572 - 财政年份:2022
- 资助金额:
$ 55.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Increasing health care equity by examining a possible mediator of the relationship between implicit bias and provider behavior: intergroup anxiety
通过检查隐性偏见与提供者行为之间关系的可能中介因素来提高医疗保健公平性:群体间焦虑
- 批准号:
10335089 - 财政年份:2021
- 资助金额:
$ 55.41万 - 项目类别:
Early-life stress experiences alter adult behavior: the lateral habenula and anxiety and depression.
早期生活的压力经历改变了成年后的行为:外侧缰核、焦虑和抑郁。
- 批准号:
21K06371 - 财政年份:2021
- 资助金额:
$ 55.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transdiagnostic internet cognitive-behavior therapy for mixed anxiety and depressive symptoms in postnatal women: A randomized controlled trial
针对产后女性混合焦虑和抑郁症状的跨诊断互联网认知行为疗法:一项随机对照试验
- 批准号:
444393 - 财政年份:2021
- 资助金额:
$ 55.41万 - 项目类别:
Operating Grants
Transdiagnostic internet cognitive-behavior therapy for mixed anxiety and depressive disorders in primary care: A dissemination and implementation study
初级保健中混合焦虑和抑郁症的跨诊断互联网认知行为疗法:传播和实施研究
- 批准号:
432512 - 财政年份:2020
- 资助金额:
$ 55.41万 - 项目类别:
Operating Grants
Investigating Ventral CA1 Neural Representations of Anxiety-Like Behavior
研究焦虑样行为的腹侧 CA1 神经表征
- 批准号:
10424473 - 财政年份:2020
- 资助金额:
$ 55.41万 - 项目类别: