Skeletal Muscle as a Target for Cardio-Metabolic Disease in Sarcopenic Obesity

骨骼肌作为肌肉减少性肥胖症心脏代谢疾病的靶标

基本信息

项目摘要

The objective of this application is to examine how augmented muscle mass, a by-product of the exercise intervention commonly prescribed for treatment of obesity and sarcopenia, can prevent and rescue metabolic and vascular dysfunction in sarcopenic obesity. The core hypothesis of this application is that targeting skeletal muscle function in aging can ameliorate metabolic dysfunction and oxidant-induced hypertension in obesity and lay the groundwork for establishment of an independent research program directed toward determining if obesity-derived cardiometabolic dysfunction can be rescued through augmented mass with aging and specific fiber types. The goals of this application will be accomplished by examining the effect of augmented muscle mass, through myostatin deletion, on cardiometabolic function in a mouse model of obesity (the db/db mouse). Experimental methods include in vivo blood pressure using telemetry in conscious mice, vascular function assessments using pressure myography of isolated vessels, and metabolic function using metabolic chambers, glucose tolerance tests, whole body quantification of lean mass and adiposity via DXA Piximus, and blood lipid profiles. Our data indicate that increasing muscle mass in obese mice protects against the loss of muscle mass and strength, glycemic control and vascular dysfunction, which accompany obesity in the db/db mouse. Importantly, our preliminary data indicate that these improvements to metabolic and cardiovascular function prevent hypertension in the db/db mouse. Further, this application will determine the relative contribution to organ specific oxidant stress, namely vascular NOX1 and renal NOX4 in a model of sarcopenic obesity. The model currently used (constitutive myostatin deletion) involves lifelong augmented muscle. A key question remains unanswered; can augmented muscle rescue/reverse obesity-derived cardiovascular dysfunction or is lifelong fitness essential? The applicant intends to focus his transition to independence on answering these key questions. I will use a novel inducible knockout of myostatin in a db/db mouse to determine if augmented muscle mass can rescue metabolic and vascular dysfunction after development of a fully obese phenotype. This will serve to mimic the patient population and allow for results to translate to the clinic. Additionally, literature suggests that skeletal muscle fiber type plays a crucial role in outcomes. The myostatin model used results in predominantly glycolytic skeletal muscle expansion and it would be advantageous to determine if a mouse model of obesity with predominantly oxidative skeletal muscle expansion (PGC1) would have similar cardiometabolic improvements.
The objective of this application is to examine how augmented muscle mass, a by-product of the exercise intervention commonly prescribed for treatment of obesity and sarcopenia, can prevent and rescue metabolic and vascular dysfunction in sarcopenic obesity. The core hypothesis of this application is that targeting skeletal muscle function in aging can ameliorate metabolic dysfunction and oxidant-induced hypertension in obesity and lay the groundwork for establishment of an independent research program directed toward determining if obesity-derived cardiometabolic dysfunction can be rescued through augmented mass with aging and specific fiber types. The goals of this application will be accomplished by examining the effect of augmented muscle mass, through myostatin deletion, on cardiometabolic function in a mouse model of obesity (the db/db mouse). Experimental methods include in vivo blood pressure using telemetry in conscious mice, vascular function assessments using pressure myography of isolated vessels, and metabolic function using metabolic chambers, glucose tolerance tests, whole body quantification of lean mass and adiposity via DXA Piximus, and blood lipid profiles. Our data indicate that increasing muscle mass in obese mice protects against the loss of muscle mass and strength, glycemic control and vascular dysfunction, which accompany obesity in the db/db mouse. Importantly, our preliminary data indicate that these improvements to metabolic and cardiovascular function prevent hypertension in the db/db mouse. Further, this application will determine the relative contribution to organ specific oxidant stress, namely vascular NOX1 and renal NOX4 in a model of sarcopenic obesity. The model currently used (constitutive myostatin deletion) involves lifelong augmented muscle. A key question remains unanswered; can augmented muscle rescue/reverse obesity-derived cardiovascular dysfunction or is lifelong fitness essential? The applicant intends to focus his transition to independence on answering these key questions. I will use a novel inducible knockout of myostatin in a db/db mouse to determine if augmented muscle mass can rescue metabolic and vascular dysfunction after development of a fully obese phenotype. This will serve to mimic the patient population and allow for results to translate to the clinic. Additionally, literature suggests that skeletal muscle fiber type plays a crucial role in outcomes. The myostatin model used results in predominantly glycolytic skeletal muscle expansion and it would be advantageous to determine if a mouse model of obesity with predominantly oxidative skeletal muscle expansion (PGC1) would have similar cardiometabolic improvements.

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Endothelial alpha globin is a nitrite reductase.
  • DOI:
    10.1038/s41467-022-34154-3
  • 发表时间:
    2022-10-27
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
Obesity as a premature aging phenotype - implications for sarcopenic obesity.
肥胖作为一种过早衰老的表型——对肌肉减少性肥胖的影响。
  • DOI:
    10.1007/s11357-022-00567-7
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Nunan, Emily;Wright, Carson L.;Semola, Oluwayemisi A.;Subramanian, Madhan;Balasubramanian, Priya;Lovern, Pamela C.;Fancher, Ibra S.;Butcher, Joshua T.
  • 通讯作者:
    Butcher, Joshua T.
The development of peripheral microvasculopathy with chronic metabolic disease in obese Zucker rats: a retrograde emergence?
肥胖 Zucker 大鼠周围微血管病变伴慢性代谢性疾病的发展:逆行出现?
  • DOI:
    10.1152/ajpheart.00264.2022
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Halvorson,BraydenD;Menon,NithinJ;Goldman,Daniel;Frisbee,StephanieJ;Goodwill,AdamG;Butcher,JoshuaT;Stapleton,PhoebeA;Brooks,StevenD;d'Audiffret,AlexandreC;Wiseman,RobertW;Lombard,JulianH;Brock,RobertW;Olfert,IMark;Chan
  • 通讯作者:
    Chan
Changes in macrophage immunometabolism as a marker of skeletal muscle dysfunction across the lifespan.
  • DOI:
    10.18632/aging.204750
  • 发表时间:
    2023-05-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Obesity Induces Disruption of Microvascular Endothelial Circadian Rhythm.
  • DOI:
    10.3389/fphys.2022.887559
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Thomas Butcher其他文献

75 - Endothelial Hemoglobin Alpha by the HBA1 Gene Is Crucial to Release of NO-Derived Metabolites into Tissue and Blood
  • DOI:
    10.1016/j.freeradbiomed.2014.10.390
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joshua Thomas Butcher;Leon J. DeLalio;Lauren A. Biwer;Rachel B. Weaver;Brant E. Isakson
  • 通讯作者:
    Brant E. Isakson

Joshua Thomas Butcher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Thomas Butcher', 18)}}的其他基金

Skeletal Muscle as a Target for Cardio-Metabolic Disease in Sarcopenic Obesity
骨骼肌作为肌肉减少性肥胖症心脏代谢疾病的靶标
  • 批准号:
    10407603
  • 财政年份:
    2020
  • 资助金额:
    $ 12.88万
  • 项目类别:
Skeletal Muscle as a Target for Cardio-Metabolic Disease in Sarcopenic Obesity
骨骼肌作为肌肉减少性肥胖症心脏代谢疾病的靶标
  • 批准号:
    10221585
  • 财政年份:
    2020
  • 资助金额:
    $ 12.88万
  • 项目类别:
Skeletal Muscle as a Target for Cardio-Metabolic Disease in Sarcopenic Obesity
骨骼肌作为肌肉减少性肥胖症心脏代谢疾病的靶标
  • 批准号:
    10053806
  • 财政年份:
    2020
  • 资助金额:
    $ 12.88万
  • 项目类别:

相似海外基金

Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
  • 批准号:
    10653464
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
  • 批准号:
    2316108
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
  • 批准号:
    BB/V006738/1
  • 财政年份:
    2020
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
  • 批准号:
    10294664
  • 财政年份:
    2020
  • 资助金额:
    $ 12.88万
  • 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
  • 批准号:
    422882
  • 财政年份:
    2019
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
  • 批准号:
    430871
  • 财政年份:
    2019
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
  • 批准号:
    9811094
  • 财政年份:
    2019
  • 资助金额:
    $ 12.88万
  • 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
  • 批准号:
    18K16103
  • 财政年份:
    2018
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
  • 批准号:
    1823881
  • 财政年份:
    2018
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
  • 批准号:
    369385245
  • 财政年份:
    2017
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了