Skeletal Muscle as a Target for Cardio-Metabolic Disease in Sarcopenic Obesity
骨骼肌作为肌肉减少性肥胖症心脏代谢疾病的靶标
基本信息
- 批准号:10221585
- 负责人:
- 金额:$ 12.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAgeAge-MonthsAgingAmino AcidsAnimal ModelBiologyBloodBlood PressureBlood Pressure MonitorsBlood VesselsCardiometabolic DiseaseCardiovascular DiseasesCardiovascular PhysiologyCardiovascular systemChildClinicConsciousDataDevelopmentDiseaseDual-Energy X-Ray AbsorptiometryElderlyEndotheliumEnterobacteria phage P1 Cre recombinaseEnzymesEpidemicEquilibriumEvaluationExerciseFiberFunctional disorderGDF8 geneGenesGlucoseGlucose tolerance testGoalsGrowthHandHealthHypertensionInjury to KidneyInterventionKidneyKnock-outLife StyleLinkLiteratureLocomotionMedicalMetabolicMetabolic dysfunctionMethodsModelingMusMuscleMuscle FibersMuscle ProteinsMuscle functionMuscular AtrophyMyographyNADPH Oxidase 1Obese MiceObesityObesity EpidemicOrganOutcomeOxidantsPathologyPathway interactionsPhenotypePlayPopulationPrevalencePreventionProductionRenal HypertensionRenal functionResearchRisk FactorsRoleSkeletal MuscleStreamSuperoxidesTelemetryTestingTherapeuticThinnessTissuesTrainingTransgenic OrganismsTranslatingUnited States National Institutes of HealthVascular DiseasesWorkagedaging populationblood glucose regulationblood lipidblood pressure regulationburden of illnesscardiometabolismcytokinedb/db mouseeffective interventionexercise interventionexperiencefitnessglycemic controlhealthy aginghuman modelimpaired glucose toleranceimprovedimproved outcomein vivoindexingjuvenile animalkidney vascular structuremouse modelmuscle agingmuscle formmuscle strengthnovelobese patientsobesity treatmentoverexpressionoxidant stresspatient populationpressurepreventprogramsprotein degradationsarcopeniasarcopenic obesityskeletal muscle growth
项目摘要
The objective of this application is to examine how augmented muscle mass, a by-product of the exercise
intervention commonly prescribed for treatment of obesity and sarcopenia, can prevent and rescue metabolic
and vascular dysfunction in sarcopenic obesity. The core hypothesis of this application is that targeting skeletal
muscle function in aging can ameliorate metabolic dysfunction and oxidant-induced hypertension in obesity
and lay the groundwork for establishment of an independent research program directed toward determining if
obesity-derived cardiometabolic dysfunction can be rescued through augmented mass with aging and specific
fiber types.
The goals of this application will be accomplished by examining the effect of augmented muscle mass, through
myostatin deletion, on cardiometabolic function in a mouse model of obesity (the db/db mouse). Experimental
methods include in vivo blood pressure using telemetry in conscious mice, vascular function assessments
using pressure myography of isolated vessels, and metabolic function using metabolic chambers, glucose
tolerance tests, whole body quantification of lean mass and adiposity via DXA Piximus, and blood lipid profiles.
Our data indicate that increasing muscle mass in obese mice protects against the loss of muscle mass and
strength, glycemic control and vascular dysfunction, which accompany obesity in the db/db mouse.
Importantly, our preliminary data indicate that these improvements to metabolic and cardiovascular function
prevent hypertension in the db/db mouse. Further, this application will determine the relative contribution to
organ specific oxidant stress, namely vascular NOX1 and renal NOX4 in a model of sarcopenic obesity.
The model currently used (constitutive myostatin deletion) involves lifelong augmented muscle. A key question
remains unanswered; can augmented muscle rescue/reverse obesity-derived cardiovascular dysfunction or is
lifelong fitness essential? The applicant intends to focus his transition to independence on answering these key
questions. I will use a novel inducible knockout of myostatin in a db/db mouse to determine if augmented
muscle mass can rescue metabolic and vascular dysfunction after development of a fully obese phenotype.
This will serve to mimic the patient population and allow for results to translate to the clinic. Additionally,
literature suggests that skeletal muscle fiber type plays a crucial role in outcomes. The myostatin model used
results in predominantly glycolytic skeletal muscle expansion and it would be advantageous to determine if a
mouse model of obesity with predominantly oxidative skeletal muscle expansion (PGC1) would have similar
cardiometabolic improvements.
The objective of this application is to examine how augmented muscle mass, a by-product of the exercise
intervention commonly prescribed for treatment of obesity and sarcopenia, can prevent and rescue metabolic
and vascular dysfunction in sarcopenic obesity. The core hypothesis of this application is that targeting skeletal
muscle function in aging can ameliorate metabolic dysfunction and oxidant-induced hypertension in obesity
and lay the groundwork for establishment of an independent research program directed toward determining if
obesity-derived cardiometabolic dysfunction can be rescued through augmented mass with aging and specific
fiber types.
The goals of this application will be accomplished by examining the effect of augmented muscle mass, through
myostatin deletion, on cardiometabolic function in a mouse model of obesity (the db/db mouse). Experimental
methods include in vivo blood pressure using telemetry in conscious mice, vascular function assessments
using pressure myography of isolated vessels, and metabolic function using metabolic chambers, glucose
tolerance tests, whole body quantification of lean mass and adiposity via DXA Piximus, and blood lipid profiles.
Our data indicate that increasing muscle mass in obese mice protects against the loss of muscle mass and
strength, glycemic control and vascular dysfunction, which accompany obesity in the db/db mouse.
Importantly, our preliminary data indicate that these improvements to metabolic and cardiovascular function
prevent hypertension in the db/db mouse. Further, this application will determine the relative contribution to
organ specific oxidant stress, namely vascular NOX1 and renal NOX4 in a model of sarcopenic obesity.
The model currently used (constitutive myostatin deletion) involves lifelong augmented muscle. A key question
remains unanswered; can augmented muscle rescue/reverse obesity-derived cardiovascular dysfunction or is
lifelong fitness essential? The applicant intends to focus his transition to independence on answering these key
questions. I will use a novel inducible knockout of myostatin in a db/db mouse to determine if augmented
muscle mass can rescue metabolic and vascular dysfunction after development of a fully obese phenotype.
This will serve to mimic the patient population and allow for results to translate to the clinic. Additionally,
literature suggests that skeletal muscle fiber type plays a crucial role in outcomes. The myostatin model used
results in predominantly glycolytic skeletal muscle expansion and it would be advantageous to determine if a
mouse model of obesity with predominantly oxidative skeletal muscle expansion (PGC1) would have similar
cardiometabolic improvements.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Thomas Butcher其他文献
75 - Endothelial Hemoglobin Alpha by the HBA1 Gene Is Crucial to Release of NO-Derived Metabolites into Tissue and Blood
- DOI:
10.1016/j.freeradbiomed.2014.10.390 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:
- 作者:
Joshua Thomas Butcher;Leon J. DeLalio;Lauren A. Biwer;Rachel B. Weaver;Brant E. Isakson - 通讯作者:
Brant E. Isakson
Joshua Thomas Butcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Thomas Butcher', 18)}}的其他基金
Skeletal Muscle as a Target for Cardio-Metabolic Disease in Sarcopenic Obesity
骨骼肌作为肌肉减少性肥胖症心脏代谢疾病的靶标
- 批准号:
10623191 - 财政年份:2020
- 资助金额:
$ 12.88万 - 项目类别:
Skeletal Muscle as a Target for Cardio-Metabolic Disease in Sarcopenic Obesity
骨骼肌作为肌肉减少性肥胖症心脏代谢疾病的靶标
- 批准号:
10407603 - 财政年份:2020
- 资助金额:
$ 12.88万 - 项目类别:
Skeletal Muscle as a Target for Cardio-Metabolic Disease in Sarcopenic Obesity
骨骼肌作为肌肉减少性肥胖症心脏代谢疾病的靶标
- 批准号:
10053806 - 财政年份:2020
- 资助金额:
$ 12.88万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 12.88万 - 项目类别:
Research Grant