Resolving Spatiotemporally-Specific Multicellular Dynamics In Vivo During Olfactory Neurogenesis

解决嗅觉神经发生过程中体内时空特异性多细胞动力学

基本信息

  • 批准号:
    10624245
  • 负责人:
  • 金额:
    $ 20.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2023-10-29
  • 项目状态:
    已结题

项目摘要

Project Summary While many neurological defects and disorders are known to result from developmental perturbations in specific cell types and/or are linked to well-studied signaling pathways, the system-level coordination of multiple cell populations and the spatiotemporal specificity of their signaling outputs during neurogenesis remains poorly understood. The long-term objective of this proposal is to take advantage of the accessible and rapidly developing zebrafish olfactory epithelium to quantitatively characterize cell-cell signaling pathways and multicellular behaviors that drive the assembly of complex neuronal populations in vertebrates. Proposed experiments will test the hypothesis that the Notch and Wnt signaling pathways provide spatially- and temporally- sensitive cues to guide stem cell migration into the olfactory epithelium and regulate sensory neurogenesis. Small subsets of cells will be manipulated and analyzed completely in vivo, at subcellular spatial resolution and with sub-minute temporal resolution, so as to determine the system-level coordination of stem cell migration, specification, and differentiation during both normal and disrupted signaling. First, new tools and techniques will be used to perturb Wnt signaling in vivo at specific times and locations during olfactory development and to algorithmically model and explain progenitor cells’ migratory behavior. Next, Notch signaling will be manipulated in vivo to quantitate its effects on olfactory system-wide neurogenesis, and target genes will be identified that are required for neuronal specification and/or differentiation. Finally, the transcription factor insm1a will be similarly investigated to determine its role in Notch signaling-mediated olfactory neurogenesis. The approaches in this proposal will directly analyze in vivo data to understand and predict multicellular behavior without reducing biological complexity and help uncover phenotypes that may advance our broad understanding of system-wide neuronal differentiation and assembly in vivo.
项目概要 虽然已知许多神经系统缺陷和疾病是由特定的发育障碍引起的 细胞类型和/或与经过充分研究的信号通路、多个细胞的系统级协调有关 群体及其神经发生过程中信号输出的时空特异性仍然很差 明白了。该提案的长期目标是利用可访问且快速的 开发斑马鱼嗅觉上皮以定量表征细胞间信号传导途径和 驱动脊椎动物中复杂神经元群体组装的多细胞行为。建议的 实验将检验 Notch 和 Wnt 信号通路提供空间和时间的假设 引导干细胞迁移到嗅觉上皮并调节感觉神经发生的敏感线索。 将在亚细胞空间分辨率和体内完全操作和分析小部分细胞 具有亚分钟时间分辨率,从而确定干细胞迁移的系统级协调, 正常和中断信号传导过程中的规范和分化。首先,新的工具和技术将 用于在嗅觉发育过程中的特定时间和位置扰乱体内 Wnt 信号传导,并 通过算法建模并解释祖细胞的迁移行为。接下来,Notch 信号将被操纵 体内定量其对嗅觉系统范围神经发生的影响,并且将鉴定目标基因 是神经元规范和/或分化所必需的。最后,转录因子insm1a将是 类似地研究以确定其在 Notch 信号介导的嗅觉神经发生中的作用。方法 在该提案中,将直接分析体内数据以理解和预测多细胞行为,而不减少 生物复杂性并有助于揭示表型,从而促进我们对全系统的广泛理解 体内神经元分化和组装。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ankur Saxena其他文献

Ankur Saxena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ankur Saxena', 18)}}的其他基金

Resolving Spatiotemporally-Specific Multicellular Dynamics In Vivo During Olfactory Neurogenesis
解决嗅觉神经发生过程中体内时空特异性多细胞动力学
  • 批准号:
    11002550
  • 财政年份:
    2020
  • 资助金额:
    $ 20.02万
  • 项目类别:
Modulating Neurogenesis to Counteract Aβ42-Induced Neurodegeneration
调节神经发生以抵消 Aβ42 诱导的神经变性
  • 批准号:
    10287125
  • 财政年份:
    2020
  • 资助金额:
    $ 20.02万
  • 项目类别:
Resolving Spatiotemporally-Specific Multicellular Dynamics In Vivo During Olfactory Neurogenesis
解决嗅觉神经发生过程中体内时空特异性多细胞动力学
  • 批准号:
    10377439
  • 财政年份:
    2020
  • 资助金额:
    $ 20.02万
  • 项目类别:

相似海外基金

Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
  • 批准号:
    10263607
  • 财政年份:
    2021
  • 资助金额:
    $ 20.02万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    10001503
  • 财政年份:
    2018
  • 资助金额:
    $ 20.02万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    9789318
  • 财政年份:
    2018
  • 资助金额:
    $ 20.02万
  • 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
  • 批准号:
    1714672
  • 财政年份:
    2017
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
  • 批准号:
    1548234
  • 财政年份:
    2015
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1559588
  • 财政年份:
    2015
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1254117
  • 财政年份:
    2013
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了