Structural Bioinformatics of Proteins and Protein Complexes and Applications to Cancer Biology
蛋白质和蛋白质复合物的结构生物信息学及其在癌症生物学中的应用
基本信息
- 批准号:10623840
- 负责人:
- 金额:$ 74.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Advanced Malignant NeoplasmAntibodiesBioinformaticsC-terminalCancer BiologyClassificationClinicalComplexComputing MethodologiesCryoelectron MicroscopyCrystallographyDatabasesDevelopmentFox Chase Cancer CenterHomoHumanLaboratoriesMalignant NeoplasmsMethodsMolecularPhosphotransferasesPlayProtein DynamicsProtein FamilyProteinsResearchRoleSequence AlignmentSpectrum AnalysisStatistical Data InterpretationStatistical StudyStructureT-Cell ReceptorTailTechniquesTechnologyTherapeuticTherapeutic UsesUniversitiesVariantWorkanticancer researchdeep field surveydeep learningdesignmedical schoolsprogramsprotein complexprotein functionprotein structureprotein structure predictionsimulationstructural biologythree dimensional structureunsupervised learning
项目摘要
Project Summary/Abstract
Structural biology has a fundamental role to play in the advancement of cancer biology and the development of
cancer therapeutics. With the rapid developments in experimental structural determination (both crystallography
and cryo-EM spectroscopy), structure prediction methods (primarily AlphaFold2 and RosettaFold), and molecular
simulation methods, we are poised to bring new levels structural information to cancer research. In this project,
we will analyze the structural variation and dynamics of protein families commonly associated with cancer
development or targets of cancer therapeutics using existing clustering methods for protein loops and new
unsupervised learning techniques from the field of deep learning. We will develop methods for using AlphaFold2
to predict the structures of active and inactive kinases using templates based on our classification of active and
inactive states of kinases and multiple sequence alignments optimized for this task. In relevant cases, these
structure predictions will include the N and C terminal tails and other domains which may interact with the kinase
domains. We will integrate AlphaFold2 structure predictions of protein homo- and heterooligomeric complexes
with our database of common interfaces and assemblies found across the structures of proteins in the PDB.
Interactions observed in crystals that are replicated by AlphaFold2 present well-founded hypotheses for
functional protein interactions. This will be applied specifically for all human kinases where homodimer
interactions play an important role in activation and inhibition. We will continue our structural bioinformatics
studies of antibodies and expand this work to T-cell receptors, and investigate the utility of deep learning methods
for computational antibody and TCR design. Finally, we will bring new structure prediction technologies and our
statistical analysis of protein structures to the ongoing research programs of laboratory and clinical colleagues
at Fox Chase Cancer Center and Temple University School of Medicine.
项目摘要/摘要
结构生物学在癌症生物学的进步和癌症的发展中起着基础性的作用。
癌症治疗学。随着实验结构测定的快速发展(既有结晶学
和低温EM光谱)、结构预测方法(主要是AlphaFold2和RosettaFold)和分子
模拟方法,我们准备为癌症研究带来新的层次的结构信息。在这个项目中,
我们将分析通常与癌症相关的蛋白质家族的结构变化和动态。
利用蛋白质环的现有聚类法和新的方法开发癌症治疗的靶点
来自深度学习领域的无监督学习技术。我们将开发使用AlphaFold2的方法
使用基于我们对活性和非活性的分类的模板来预测活性和非活性的激酶的结构
为这项任务优化的激活酶和多个序列比对的非激活状态。在相关案件中,这些
结构预测将包括N和C末端以及其他可能与该激酶相互作用的结构域
域名。我们将整合蛋白质同源和异源低聚复合体的AlphaFold2结构预测
利用我们的数据库,在PDB的蛋白质结构中发现了共同的接口和组装。
在由AlphaFold2复制的晶体中观察到的相互作用提出了有充分依据的假设
功能性蛋白质相互作用。这将专门应用于所有人类同源二聚体
相互作用在激活和抑制中起着重要作用。我们将继续我们的结构生物信息学
研究抗体并将这项工作扩展到T细胞受体,并调查深度学习方法的实用性
用于计算抗体和TCR设计。最后,我们将带来新的结构预测技术和我们的
对实验室和临床同事正在进行的研究计划进行的蛋白质结构的统计分析
在福克斯·蔡斯癌症中心和坦普尔大学医学院。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROLAND L DUNBRACK其他文献
ROLAND L DUNBRACK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROLAND L DUNBRACK', 18)}}的其他基金
Structural bioinformatics of proteins and protein complexes and applications to cancer biology
蛋白质和蛋白质复合物的结构生物信息学及其在癌症生物学中的应用
- 批准号:
9900841 - 财政年份:2017
- 资助金额:
$ 74.45万 - 项目类别:
Structural bioinformatics of proteins and protein complexes and applications to cancer biology
蛋白质和蛋白质复合物的结构生物信息学及其在癌症生物学中的应用
- 批准号:
10176529 - 财政年份:2017
- 资助金额:
$ 74.45万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
8504580 - 财政年份:2008
- 资助金额:
$ 74.45万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
7620459 - 财政年份:2008
- 资助金额:
$ 74.45万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
7790626 - 财政年份:2008
- 资助金额:
$ 74.45万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
8056557 - 财政年份:2008
- 资助金额:
$ 74.45万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
7461332 - 财政年份:2008
- 资助金额:
$ 74.45万 - 项目类别:
New Methods for High-Resolution Comparative Modeling
高分辨率比较建模的新方法
- 批准号:
7020915 - 财政年份:2006
- 资助金额:
$ 74.45万 - 项目类别:
Modeling of Protein Complexes and Missense Mutations
蛋白质复合物和错义突变的建模
- 批准号:
7035708 - 财政年份:2006
- 资助金额:
$ 74.45万 - 项目类别:
New Methods for High-Resolution Comparative Modeling
高分辨率比较建模的新方法
- 批准号:
7216862 - 财政年份:2006
- 资助金额:
$ 74.45万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 74.45万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 74.45万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 74.45万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 74.45万 - 项目类别:
Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 74.45万 - 项目类别:
Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 74.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 74.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 74.45万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 74.45万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 74.45万 - 项目类别:














{{item.name}}会员




