New Methods for High-Resolution Comparative Modeling
高分辨率比较建模的新方法
基本信息
- 批准号:7020915
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2009-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): The goal of this project is to improve the accuracy of comparative modeling both in the 30-90% sequence identity range and in the 10-30% range. This will be accomplished by a multi-disciplinary team of six investigators in biophysics, mathematics, statistics, and computer science. Based on new statistical analysis of homologous protein structure pairs using graphical models (Jordan) and non-parametric Bayesian methods (Jordan, Dunbrack), Tompa will devise a coarse sampling procedure, based on backtracking and branch-and-bound algorithms, designed to search the space of homologous structures from a starting model produced by the Baker or Dunbrack groups. Tseng and Baker will develop extensions of quasi-Newton optimization methods specifically tailored to Monte Carlo Minimization trajectories. These methods will take advantage of information gained in local optimizations carried out earlier in the trajectory from neighboring regions of the landscape. With a large sample of locally minimized structures, Jordan will use response surface methodology and Gaussian processes to fit a surface to these local minima. A search on this surface then produces promising low-energy regions of the space that can be searched further with fine sampling methods, including tabu search (Baker). Further optimizations with block-coordinate descent methods (Tseng) will also be implemented. Ponder will test his recently developed polarizable multi-pole force field, while developing this force field further with a generalized-Born, surface-area solvation model. Dunbrack will benchmark the accuracy of predicted structures at all stages of the project. Predicted side-chain conformations will be compared to deposited coordinates as well as electron density calculations from the experimental structure factors (Dunbrack). Finally, the methods developed in this proposal will be applied to proteins implicated in cancer development, including those in DNA repair, apoptosis, and cell-growth signaling, with a priority on targets for cancer therapeutics. New structures from three Protein Structure Initiative centers will be used both as prediction targets (before they are solved) and as templates for prediction of structures of important biological or clinical interest.
描述(由申请人提供):该项目的目标是在30%-90%的序列同一性范围和10%-30%的范围内提高比较建模的准确性。这将由一个由生物物理学、数学、统计学和计算机科学的六名研究人员组成的多学科团队完成。在使用图形模型(Jordan)和非参数贝叶斯方法(Jordan,Dunbrack)对同源蛋白质结构对进行新的统计分析的基础上,Tompa将设计一个基于回溯和分支定界算法的粗略抽样程序,旨在从Baker或Dunbrack小组产生的起始模型中搜索同源结构空间。Tseng和Baker将开发专门为蒙特卡罗最小化轨迹量身定做的准牛顿优化方法的扩展。这些方法将利用在轨道上早些时候从景观的邻近区域进行的局部优化中获得的信息。对于局部最小化结构的大样本,Jordan将使用响应面方法和高斯过程来将曲面拟合到这些局部最小值。然后,在这个表面上进行搜索,就会产生空间中有希望的低能量区域,可以用精细的采样方法进一步搜索,包括禁忌搜索(Baker)。还将实施块坐标下降法(TSENG)的进一步优化。庞德将测试他最近开发的可极化多极力场,同时用一个广义诞生的表面积溶剂化模型进一步发展这个力场。Dunbrack将在项目的所有阶段对预测结构的准确性进行基准测试。预测的侧链构象将与沉积坐标以及由实验结构因子(Dunbrack)计算的电子密度进行比较。最后,这项提案中开发的方法将应用于与癌症发展有关的蛋白质,包括DNA修复、细胞凋亡和细胞生长信号,并优先用于癌症治疗的靶点。来自三个蛋白质结构倡议中心的新结构将被用作预测目标(在它们被解决之前),并用作预测具有重要生物学或临床意义的结构的模板。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROLAND L DUNBRACK其他文献
ROLAND L DUNBRACK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROLAND L DUNBRACK', 18)}}的其他基金
Structural Bioinformatics of Proteins and Protein Complexes and Applications to Cancer Biology
蛋白质和蛋白质复合物的结构生物信息学及其在癌症生物学中的应用
- 批准号:
10623840 - 财政年份:2017
- 资助金额:
$ 70万 - 项目类别:
Structural bioinformatics of proteins and protein complexes and applications to cancer biology
蛋白质和蛋白质复合物的结构生物信息学及其在癌症生物学中的应用
- 批准号:
9900841 - 财政年份:2017
- 资助金额:
$ 70万 - 项目类别:
Structural bioinformatics of proteins and protein complexes and applications to cancer biology
蛋白质和蛋白质复合物的结构生物信息学及其在癌症生物学中的应用
- 批准号:
10176529 - 财政年份:2017
- 资助金额:
$ 70万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
8504580 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
7620459 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
7790626 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
8056557 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Bayesian Statistics and Algorithms for Homology Modeling
用于同源建模的贝叶斯统计和算法
- 批准号:
7461332 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Modeling of Protein Complexes and Missense Mutations
蛋白质复合物和错义突变的建模
- 批准号:
7035708 - 财政年份:2006
- 资助金额:
$ 70万 - 项目类别:
New Methods for High-Resolution Comparative Modeling
高分辨率比较建模的新方法
- 批准号:
7216862 - 财政年份:2006
- 资助金额:
$ 70万 - 项目类别:
相似海外基金
A Hierarchy of Fragment-based Quantum Chemical Models Incorporating Machine Learning for Applications in Nanoscale Systems
基于片段的量子化学模型的层次结构结合了机器学习在纳米级系统中的应用
- 批准号:
2102583 - 财政年份:2021
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
A hierarchy of composite quantum chemical models for applications in materials chemistry and nanoscience
用于材料化学和纳米科学应用的复合量子化学模型的层次结构
- 批准号:
1665427 - 财政年份:2017
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
A hierarchy of composite quantum chemical models for applications in materials and surface Chemistry
用于材料和表面化学应用的复合量子化学模型的层次结构
- 批准号:
1266154 - 财政年份:2013
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Physical and chemical models for ignition processes
点火过程的物理和化学模型
- 批准号:
184095471 - 财政年份:2010
- 资助金额:
$ 70万 - 项目类别:
Research Units
Chemical Models of Protein beta-Sheet Interactions
蛋白质 β-折叠相互作用的化学模型
- 批准号:
7847773 - 财政年份:2009
- 资助金额:
$ 70万 - 项目类别:
Synthetic Chemical Models of Ammonium Arene Interactions
芳烃铵相互作用的合成化学模型
- 批准号:
0739207 - 财政年份:2006
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CAREER: Functional Chemical Models of Complex Biochemical Networks
职业:复杂生化网络的功能化学模型
- 批准号:
0349034 - 财政年份:2004
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Synthetic Chemical Models of Ammonium Arene Interactions
芳烃铵相互作用的合成化学模型
- 批准号:
0415586 - 财政年份:2004
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Kinetics of Key Radical Reactions for Use in Chemical Models of Chlorinated Hydrocarbon Combustion
氯化烃燃烧化学模型中关键自由基反应的动力学
- 批准号:
0105239 - 财政年份:2001
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Geometrical Dynamics of Excitation in Heart Muscle and Chemical Models
心肌和化学模型中激发的几何动力学
- 批准号:
9974334 - 财政年份:2000
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant














{{item.name}}会员




