LatiNET, a Multilevel Social Network Model to Examine and Address SARS-CoV-2 Misinformation in Low-Income Latinx Communities.
LatiNET,一种多层次社交网络模型,用于检查和解决低收入拉丁裔社区中的 SARS-CoV-2 错误信息。
基本信息
- 批准号:10631361
- 负责人:
- 金额:$ 77.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAddressAdoptionAreaBehaviorBeliefCOVID-19 vaccineCharacteristicsCommunicationCommunitiesContractsCountyDecision MakingDiscriminationDiseaseDoseEconomicsEmotional BondsFamilyFamily memberFloridaFrequenciesFriendsFriendshipsFrightFutureHealthHealth ServicesIndividualInfluentialsInterventionKnowledgeLanguageLatinxLatinx populationLearningLow incomeMedicalMisinformationNational Institute on Minority Health and Health DisparitiesNetwork-basedParticipantPathway AnalysisPerceptionPoliciesPolitical FactorPoliticsPopulationPredispositionPsychological FactorsPublic HealthSARS-CoV-2 negativeScienceSeedsShapesSiteSocial NetworkSourceStructural RacismStructureSymptomsSystemTestingTimeTrustVaccinatedVaccinationWorkcohesioncultural valuesdesigneconomic disparityexperiencehealth disparityhealth inequalitieshealth services networkintimate partner violencemembernetwork modelspandemic diseasepoor communitiespressurepsychologicrecruitservice providerssocialsocial disparitiessocial factorssocial stigmasocial structuresociodemographicstheoriestherapy designunvaccinatedvaccine hesitancy
项目摘要
PROJECT SUMMARY/ABSTRACT
LatiNET will use a multilevel social network model to examine how SARS-CoV-2 misinformation and
Conspiracy Theory (CT) messages are shared across five settings (friends, family, work, health service and
influencers), impacting Latinx vaccine hesitancy. Social networks are self-organizing social systems that create
and reinforce perceptions, both positive and negative. An important gap in current knowledge relates to the
content, context and communication direction about SARS-CoV-2 misinformation and CT messages. By
learning how Latinx social network structures hinder or promote SARS-CoV-2 misinformation and CT
messages, we will inform the design of interventions that will reduce mistrust/fear and provide correct, timely,
and comprehensive information, through multiple social network sources, enabling Latinx to make the best
health decisions for themselves and their families. LatiNET will focus on low-income Latinx, which have long
struggled with social, economic and health inequalities. Miami-Dade County, Florida will be the site for this
study, where almost 100% of residents from in wealthiest areas have received at least one SARS-CoV-2
vaccine dose while fewer than a third of residents in poorer communities, mainly inhabited by Latinx
individuals, have been vaccinated.1 We have also identified that misinformation and CT messages are
prevalent in Florida.2 We will use Dr. Kanamori’s (PI) K99/R00 social network approaches3-8 and Drs.
Uscinski’s and Stoler’s (Co-Is) misinformation and CT message framework2,9-11 to identify how network
structures and dynamics introduce and spread misinformation and CT messages that could then influence
Latinx vaccine hesitancy. We will also identify network structures and dynamics that promote discussion
against SARS-CoV-2 misinformation and CT messages. LatiNET will study: 1) participants’ characteristics, 2)
624 friendship sociocentric networks, 3) 1,872 egocentric networks (family, work and health service), and 4)
influencer networks, all of which will be part of our adapted NIMHD framework.12 Our AIMS are: 1) Determine
how network structures and dynamics inside Latinx friendship networks shape the spread and adoption of
misinformation and CT messages associated with SARS-CoV-2 vaccine hesitancy. 2) Distinguish homophily
and dyadic characteristics and dynamics associated with misinformation and CT messages shared with family
members, co-workers and health service providers. 3) Identify Latinx affiliations with community, celebrity,
public health, political influencer and communication channels that spread CT and anti-CT messages. In all AIMS,
we will also study the underlying social and structural factors associated with Latinx health decision-making
(e.g., discrimination, stigma, intimate partner violence) and beliefs and behaviors tied to misinformation and CT
messages (e.g., individual-level political, psychological, and social factors). LatiNET will provide new
information that can inform policy and the design of future interventions to reduce the impact of misinformation
and CT messages on SARS-CoV-2 vaccine hesitancy nationwide, and also with different priority populations.
项目总结/摘要
该网络将使用一个多层次的社会网络模型来研究SARS-CoV-2错误信息和
阴谋论(CT)的信息在五个环境(朋友,家人,工作,医疗服务和
影响者),影响Latinx疫苗的犹豫。社交网络是一种自组织的社会系统,
并强化正面和负面的看法。当前知识的一个重要空白涉及
关于SARS-CoV-2错误信息和CT信息的内容、背景和传播方向。通过
学习拉丁裔社会网络结构如何阻碍或促进SARS-CoV-2错误信息和CT
信息,我们将告知干预措施的设计,这将减少不信任/恐惧,并提供正确的,及时的,
和全面的信息,通过多个社交网络来源,使拉丁美洲,使最好的
为自己和家人做出健康决定。AZNET将专注于低收入的拉丁裔,他们长期以来
与社会、经济和健康不平等作斗争。迈阿密戴德县,佛罗里达将是网站为这一点
在这项研究中,来自最富裕地区的几乎100%的居民至少感染了一种SARS-CoV-2
而在主要由拉丁裔居民居住的较贫困社区,
1我们还发现,错误信息和CT信息是
我们将使用Kanamori博士(PI)的K99/R 00社交网络方法3 -8和Dr.
Uplusski和Steluski(Co-Is)错误信息和CT消息框架2,9-11,以确定网络如何
结构和动力学引入并传播错误信息和CT信息,
Latinx疫苗犹豫。我们还将确定促进讨论的网络结构和动态
针对SARS-CoV-2错误信息和CT消息。该网络将研究:1)参与者的特点,2)
624个友谊社会中心网络,3)1,872个自我中心网络(家庭,工作和健康服务),和4)
影响者网络,所有这些都将成为我们适应NIMHD框架的一部分。12我们的目标是:1)确定
拉丁友谊网络内部的网络结构和动态如何塑造
与SARS-CoV-2疫苗犹豫相关的错误信息和CT信息。2)辨别同质性
与家庭共享的错误信息和CT信息相关的二元特征和动态
成员、同事和卫生服务提供者。3)确定拉丁裔与社区,名人,
公共卫生、政治影响者和传播CT和反CT信息的沟通渠道。在所有大西洋、印度洋、地中海和南海区域,
我们还将研究与拉丁裔健康决策相关的潜在社会和结构因素
(e.g.,歧视,耻辱,亲密伴侣暴力)以及与错误信息和CT相关的信仰和行为
消息(例如,个人层面的政治、心理和社会因素)。互联网将提供新的
可以为政策和未来干预措施的设计提供信息,以减少错误信息的影响
和CT信息对SARS-CoV-2疫苗犹豫全国范围内,也与不同的优先人群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mariano Juan Kanamori Nishimura其他文献
Mariano Juan Kanamori Nishimura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mariano Juan Kanamori Nishimura', 18)}}的其他基金
ÚNETE: Combining Friendship Support Networks and Targeted Messaging from Celebrity Influencers to Reduce Latinx Substance Use Disparities
�NETE:结合友谊支持网络和名人影响者的有针对性的消息来减少拉丁裔药物使用差异
- 批准号:
10740012 - 财政年份:2023
- 资助金额:
$ 77.78万 - 项目类别:
FINISHING HIV: An EHE model for Latinos Integrating One-Stop-Shop PrEP Services, a Social Network Support Program and a National Pharmacy Chain
完成艾滋病毒:针对拉丁裔的 EHE 模式,整合一站式 PrEP 服务、社交网络支持计划和全国药房连锁店
- 批准号:
10652529 - 财政年份:2022
- 资助金额:
$ 77.78万 - 项目类别:
FINISHING HIV: An EHE model for Latinos Integrating One-Stop-Shop PrEP Services, a Social Network Support Program and a National Pharmacy Chain
完成艾滋病毒:针对拉丁裔的 EHE 模式,整合一站式 PrEP 服务、社交网络支持计划和全国药房连锁店
- 批准号:
10459704 - 财政年份:2022
- 资助金额:
$ 77.78万 - 项目类别:
LatiNET, a Multilevel Social Network Model to Examine and Address SARS-CoV-2 Misinformation in Low-Income Latinx Communities.
LatiNET,一种多层次社交网络模型,用于检查和解决低收入拉丁裔社区中的 SARS-CoV-2 错误信息。
- 批准号:
10707207 - 财政年份:2022
- 资助金额:
$ 77.78万 - 项目类别:
PrEParados: A Multi-Level Social Network Model to Increase PrEP Enrollment by Latino MSM Self-Identified as Gay, Bisexual
PrEParados:一种多层次社交网络模型,可提高自认是同性恋、双性恋的拉丁裔 MSM 的 PrEP 注册率
- 批准号:
10161442 - 财政年份:2020
- 资助金额:
$ 77.78万 - 项目类别:
PrEParados: A Multi-Level Social Network Model to Increase PrEP Enrollment by Latino MSM Self-Identified as Gay, Bisexual
PrEParados:一种多层次社交网络模型,可提高自认是同性恋、双性恋的拉丁裔 MSM 的 PrEP 注册率
- 批准号:
10310530 - 财政年份:2020
- 资助金额:
$ 77.78万 - 项目类别:
PrEParados: A Multi-Level Social Network Model to Increase PrEP Enrollment by Latino MSM Self-Identified as Gay, Bisexual
PrEParados:一种多层次社交网络模型,可提高自认是同性恋、双性恋的拉丁裔 MSM 的 PrEP 注册率
- 批准号:
10517510 - 财政年份:2020
- 资助金额:
$ 77.78万 - 项目类别:
PrEParados: A Multi-Level Social Network Model to Increase PrEP Enrollment by Latino MSM Self-Identified as Gay, Bisexual
PrEParados:一种多层次社交网络模型,可提高自认是同性恋、双性恋的拉丁裔 MSM 的 PrEP 注册率
- 批准号:
10738838 - 财政年份:2020
- 资助金额:
$ 77.78万 - 项目类别:
Multilevel approaches for embracing dyadic, egocentric and two-mode networks which address substance use disorders and HIV risk in Latina seasonal workers
采用二元、自我中心和两种模式网络的多层次方法,解决拉丁季节性工人的药物滥用障碍和艾滋病毒风险
- 批准号:
9594629 - 财政年份:2018
- 资助金额:
$ 77.78万 - 项目类别:
Multilevel approaches for embracing dyadic, egocentric and two-mode networks which address substance use disorders and HIV risk in Latina seasonal workers
采用二元、自我中心和两种模式网络的多层次方法,解决拉丁季节性工人的药物滥用障碍和艾滋病毒风险
- 批准号:
9203911 - 财政年份:2016
- 资助金额:
$ 77.78万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant