Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
基本信息
- 批准号:10627876
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-25 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAmino AcidsAnimalsAntibiotic ResistanceAntibioticsAntimicrobial ResistanceBacteriaBacterial Antibiotic ResistanceBacterial GenomeBacterial ModelCommunicable DiseasesCommunitiesComputer softwareDairyingDataDiseaseEcologyEmerging Communicable DiseasesEvolutionExperimental DesignsExposure toFarmFarming environmentGenesGenomeGenomicsGuidelinesHumanHuman MicrobiomeInfectionLivestockMetabolic PathwayMetagenomicsMethodologyMethodsModelingParameter EstimationPathogenicityPersonsPopulationProceduresPublic HealthPublishingResistanceResolutionRiskShotgun SequencingShotgunsSingle Nucleotide PolymorphismStatistical MethodsStatistical ModelsTestingVariantVirulenceWorkZoonosesbacterial communitybacterial resistancecohortdesigndisorder preventionexperimental studygut microbiomehigh riskimprovedinfection riskinsightmetagenomemetagenomic sequencingmicrobialmicrobial genomemicrobiomemicrobiome researchnovelopen sourcepathogenpathogen spilloverpressureresponsetransmission process
项目摘要
Project Summary:
Zoonotic diseases result from the spillover of pathogens from animal reservoirs to humans due
to contact with animals or animal products. An estimated 60% of known infectious diseases and
up to 75% of emerging infectious diseases are zoonotic in origin. Despite this, relatively little is
known about the alterations to the human microbiome in persons with a high degree of close
contact with animals on farms. We propose a study to understand the pathogenic and non-
pathogenic effects of a high degree of livestock exposure. We will use shotgun metagenomics
to investigate which bacteria colonize the human gut after zoonotic exposure, which bacteria are
outcompeted by colonizers, and which bacteria adapt. To enable comparisons with respect to
virulence, beneficial metabolic pathways and antibiotic resistance, we will develop novel
statistical methods for bacterial pangenomics. Existing methods for bacterial pangenomics
assume that all genomes are observed without error, which rarely is the case for metagenome-
assembled genomes (MAGs). For example, MAGs may omit genes that are truly present in the
target genome, or MAGs may contain erroneously observed genes. To address limitations of
current methods, we will develop statistical methodology that adjusts for differential quality in
gene-level comparisons of metagenome-assembled genomes. Additionally, we will develop
guidelines for the design of shotgun sequencing experiments based on maximizing power to
test hypotheses about associations with gene presence. Successful completion of these aims
will increase our understanding of the mechanisms of transmission of zoonotic pathogens and
commensals, and advance broadly applicable and essential methodology for comparing
bacterial genomes.
项目摘要:
人畜共患疾病是由于病原体从动物宿主向人类扩散而引起的,
与动物或动物产品接触。据估计,60%的已知传染病和
高达75%的新发传染病是人畜共患疾病。尽管如此,
已知在与人类微生物高度接近的人中,
在农场接触动物。我们提出了一项研究,以了解致病性和非-
牲畜高度接触的致病作用。我们将使用鸟枪宏基因组学
为了研究哪些细菌在人畜共患病暴露后定植在人类肠道中,
被殖民者击败,以及哪些细菌适应。要启用与以下内容的比较,请执行以下操作:
毒力,有益的代谢途径和抗生素耐药性,我们将开发新的
细菌泛基因组学的统计方法。细菌泛基因组学的现有方法
假设所有的基因组都被观察到没有错误,这对于宏基因组来说是很少见的-
组装基因组(MAG)。例如,MAG可能会忽略真正存在于细胞中的基因。
靶基因组或MAG可能含有错误观察到的基因。为了解决
目前的方法,我们将开发统计方法,调整不同的质量,
宏基因组组装基因组的基因水平比较。此外,我们将开发
基于最大功效的鸟枪测序实验设计指南
测试与基因存在相关的假设。圆满完成这些目标
将增加我们对人畜共患病病原体传播机制的了解,
论文,并提出了广泛适用的基本方法,比较
细菌基因组
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy D Willis其他文献
Estimating Fold Changes from Partially Observed Outcomes with Applications in Microbial Metagenomics
根据部分观察结果估计倍数变化及其在微生物宏基因组学中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David S. Clausen;Amy D Willis - 通讯作者:
Amy D Willis
Amy D Willis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy D Willis', 18)}}的其他基金
Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
- 批准号:
10428940 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
- 批准号:
10439786 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
- 批准号:
10226101 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
- 批准号:
9796450 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
- 批准号:
10693172 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
- 批准号:
10000959 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant














{{item.name}}会员




