Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
基本信息
- 批准号:10439786
- 负责人:
- 金额:$ 30.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:BioinformaticsBiologicalBiological ModelsBiomedical ResearchClinical TrialsComputer softwareDNADataData SourcesDetectionDiagnosisDiagnosticDiseaseElementsExperimental DesignsGenesGoalsHealthHumanHuman MicrobiomeInfectionLaboratoriesMasksMeasurementMetabolicMethodsModelingMorphologic artifactsNoisePlayProcessProteomicsProtocols documentationReproducibilityResearchResearch MethodologyResearch PersonnelRoleSampling StudiesSignal TransductionStatistical Data InterpretationStatistical MethodsStatistical ModelsTaxonomyTestingTherapeuticVariantbasebiomedical scientistcostdesigngenome sequencinginstrumentationmetagenomic sequencingmicrobialmicrobial communitymicrobiomemicrobiome analysismicrobiome researchopen sourcesequencing platformwhole genome
项目摘要
PROJECT SUMMARY
The microbiome, which plays an important role in human health and disease, is generally
characterized using high throughput genome sequencing. However, the laboratory processes
required for microbial metagenomic sequencing can introduce spurious measurement noise due
to, for example, DNA extraction, amplification, sequencing depth, GC bias, batch effects,
laboratory protocols, and bioinformatics processing. Without correction, the magnitude of
sample- and study- specific variation can easily exceed the magnitude of variation due to
treatment or disease status. Therefore, diagnosis and treatment of diseases and infections
based on microbial sequencing is impeded by spurious noise that masks true biological signal.
The overall goals of this research are to develop new statistical methods for the analysis of
microbiome data, including taxonomic, functional, and metabolic data. Our statistical models will
explicitly model batch and technical variation, allowing us to distinguish, rather than conflate,
biological signal and non-biological noise. Our new models will leverage commonly-collected
sequence data, such as positive controls and technical replicates, which are not typically utilized
by researchers in their statistical analysis of microbiome data. By designing statistical methods
that use existing data sources, we will reduce the amount and cost of sequencing required to
detect true biological signals. Our models will allow us to perform hypothesis testing for
differential abundance of microbial genes, strains, and metabolites, as well as shifts in the
diversity of microbial communities, without discarding biological signal or detecting spurious
technical noise due to imperfect laboratory protocols and instrumentation. The methods are
applicable to a broad range of experimental designs (including observational and longitudinal),
biomedical research methods (including model systems and clinical trials), and sequencing
platforms (including marker gene and whole genome sequencing as well as spectrometric
methods for metabolic and proteomic profiling). Our statistical methods will be distributed as
freely available, open-source software, which will include extensive tutorials, and forums for
user questions. By avoiding detection of signals due to sample- and study-!specific artefacts,
our methods will increase the reproducibility of microbiome research, and facilitate the
identification of therapeutic and diagnostic opportunities in microbiome science.
项目摘要
微生物组在人类健康和疾病中起着重要作用,
使用高通量基因组测序进行表征。然而,实验室处理
微生物宏基因组测序所需的测量噪声可能会引入虚假的测量噪声,
例如,DNA提取、扩增、测序深度、GC偏差、批次效应,
实验室方案和生物信息学处理。如果不进行校正,
样本和研究特定的变异很容易超过变异的幅度,
治疗或疾病状态。因此,疾病和感染的诊断和治疗
基于微生物测序的方法受到掩盖真实生物信号的假噪声的阻碍。
本研究的总体目标是开发新的统计方法,
微生物组数据,包括分类、功能和代谢数据。我们的统计模型
明确模型批次和技术变化,使我们能够区分,而不是混为一谈,
生物信号和非生物噪声。我们的新模型将利用常见的
序列数据,如阳性对照和技术重复,通常不使用
研究人员对微生物组数据进行了统计分析。通过设计统计方法
使用现有数据源,我们将减少测序所需的数量和成本,
检测真实的生物信号我们的模型将允许我们执行假设检验,
微生物基因、菌株和代谢物的丰度差异,以及
微生物群落的多样性,而不会丢弃生物信号或检测到虚假的
由于不完善的实验室协议和仪器造成的技术噪音。所述方法
适用于广泛的实验设计(包括观察和纵向),
生物医学研究方法(包括模型系统和临床试验)和测序
平台(包括标记基因和全基因组测序以及光谱分析)
代谢和蛋白质组学分析方法)。我们的统计方法将分布为
免费提供的开源软件,其中将包括广泛的教程和论坛,
用户提问。通过避免检测信号由于样品-和研究-!特定的人工制品,
我们的方法将提高微生物组研究的可重复性,
确定微生物组科学中的治疗和诊断机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy D Willis其他文献
Estimating Fold Changes from Partially Observed Outcomes with Applications in Microbial Metagenomics
根据部分观察结果估计倍数变化及其在微生物宏基因组学中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David S. Clausen;Amy D Willis - 通讯作者:
Amy D Willis
Amy D Willis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy D Willis', 18)}}的其他基金
Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
- 批准号:
10428940 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
- 批准号:
10627876 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
- 批准号:
10226101 - 财政年份:2019
- 资助金额:
$ 30.63万 - 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
- 批准号:
9796450 - 财政年份:2019
- 资助金额:
$ 30.63万 - 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
- 批准号:
10693172 - 财政年份:2019
- 资助金额:
$ 30.63万 - 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
- 批准号:
10000959 - 财政年份:2019
- 资助金额:
$ 30.63万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 30.63万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 30.63万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 30.63万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 30.63万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 30.63万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 30.63万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 30.63万 - 项目类别: