Statistical methods to enhance reproducible microbiome discovery

增强可重复微生物组发现的统计方法

基本信息

  • 批准号:
    10693172
  • 负责人:
  • 金额:
    $ 30.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The microbiome, which plays an important role in human health and disease, is generally characterized using high throughput genome sequencing. However, the laboratory processes required for microbial metagenomic sequencing can introduce spurious measurement noise due to, for example, DNA extraction, amplification, sequencing depth, GC bias, batch effects, laboratory protocols, and bioinformatics processing. Without correction, the magnitude of sample- and study- specific variation can easily exceed the magnitude of variation due to treatment or disease status. Therefore, diagnosis and treatment of diseases and infections based on microbial sequencing is impeded by spurious noise that masks true biological signal. The overall goals of this research are to develop new statistical methods for the analysis of microbiome data, including taxonomic, functional, and metabolic data. Our statistical models will explicitly model batch and technical variation, allowing us to distinguish, rather than conflate, biological signal and non-biological noise. Our new models will leverage commonly-collected sequence data, such as positive controls and technical replicates, which are not typically utilized by researchers in their statistical analysis of microbiome data. By designing statistical methods that use existing data sources, we will reduce the amount and cost of sequencing required to detect true biological signals. Our models will allow us to perform hypothesis testing for differential abundance of microbial genes, strains, and metabolites, as well as shifts in the diversity of microbial communities, without discarding biological signal or detecting spurious technical noise due to imperfect laboratory protocols and instrumentation. The methods are applicable to a broad range of experimental designs (including observational and longitudinal), biomedical research methods (including model systems and clinical trials), and sequencing platforms (including marker gene and whole genome sequencing as well as spectrometric methods for metabolic and proteomic profiling). Our statistical methods will be distributed as freely available, open-source software, which will include extensive tutorials, and forums for user questions. By avoiding detection of signals due to sample- and study-!specific artefacts, our methods will increase the reproducibility of microbiome research, and facilitate the identification of therapeutic and diagnostic opportunities in microbiome science.
项目总结

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure-informed microbial population genetics elucidate selective pressures that shape protein evolution
  • DOI:
    10.1126/sciadv.abq4632
  • 发表时间:
    2023-02-24
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Kiefl, Evan;Esen, Ozcan C.;Eren, A. Murat
  • 通讯作者:
    Eren, A. Murat
Rigorous Statistical Methods for Rigorous Microbiome Science.
严谨的微生物组科学的严谨统计方法。
  • DOI:
    10.1128/msystems.00117-19
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Willis,AmyD
  • 通讯作者:
    Willis,AmyD
Tuning parameter selection for a penalized estimator of species richness.
  • DOI:
    10.1080/02664763.2020.1754359
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Paynter A;Willis AD
  • 通讯作者:
    Willis AD
MODELING MICROBIAL ABUNDANCES AND DYSBIOSIS WITH BETA-BINOMIAL REGRESSION.
  • DOI:
    10.1214/19-aoas1283
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin BD;Witten D;Willis AD
  • 通讯作者:
    Willis AD
Estimating diversity in networked ecological communities.
  • DOI:
    10.1093/biostatistics/kxaa015
  • 发表时间:
    2022-01-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Willis AD;Martin BD
  • 通讯作者:
    Martin BD
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy D Willis其他文献

Estimating Fold Changes from Partially Observed Outcomes with Applications in Microbial Metagenomics
根据部分观察结果估计倍数变化及其在微生物宏基因组学中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David S. Clausen;Amy D Willis
  • 通讯作者:
    Amy D Willis

Amy D Willis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy D Willis', 18)}}的其他基金

Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
  • 批准号:
    10428940
  • 财政年份:
    2022
  • 资助金额:
    $ 30.63万
  • 项目类别:
Statistical pangenomics to study the effects of zoonotic exposure on the gut microbiome
统计泛基因组学研究人畜共患病暴露对肠道微生物组的影响
  • 批准号:
    10627876
  • 财政年份:
    2022
  • 资助金额:
    $ 30.63万
  • 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
  • 批准号:
    10226101
  • 财政年份:
    2019
  • 资助金额:
    $ 30.63万
  • 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
  • 批准号:
    10439786
  • 财政年份:
    2019
  • 资助金额:
    $ 30.63万
  • 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
  • 批准号:
    9796450
  • 财政年份:
    2019
  • 资助金额:
    $ 30.63万
  • 项目类别:
Statistical methods to enhance reproducible microbiome discovery
增强可重复微生物组发现的统计方法
  • 批准号:
    10000959
  • 财政年份:
    2019
  • 资助金额:
    $ 30.63万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 30.63万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 30.63万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 30.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了