Self-Assembling Camptothecin Nanofiber Hydrogels as Adjunct Therapy for Intraoperative Treatment of Malignant Glioma
自组装喜树碱纳米纤维水凝胶作为恶性胶质瘤术中治疗的辅助疗法
基本信息
- 批准号:10738545
- 负责人:
- 金额:$ 52.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-04 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ExperimentsAnimal ModelAnimalsAntineoplastic AgentsAreaBehaviorBlood capillariesBody FluidsBrainBrain NeoplasmsCamptothecinCarmustineCellsChemicalsChemistryClinicalClinical TrialsCombined Modality TherapyDiagnosisDiffuseDiffusionDiseaseDistantDrug CarriersDrug DesignDrug ExposureDrug KineticsEvaluationExcisionExhibitsFeedbackFoundationsGelGliadel WafersGlioblastomaGliomaGoalsHistologicHumanHydrogelsImplantIn VitroInfiltrationInvestigationLaboratoriesLocationMalignant - descriptorMalignant GliomaMalignant NeoplasmsMalignant neoplasm of brainMeasuresModelingMolecularMonitorMorbidity - disease rateMusNeoplasmsNewly DiagnosedOperative Surgical ProceduresPatient-Focused OutcomesPatientsPenetrationPharmaceutical PreparationsPhasePlayPrimary Brain NeoplasmsPropertyRadiation therapyRecurrenceRecurrent diseaseRecurrent tumorReproducibility of ResultsResearch ActivityRodentRodent ModelRoleSafetySeriesSiteSurfaceSurgically-Created Resection CavitySurvival RateSystemTechnologyTestingTherapeuticTherapeutic AgentsTimeTissuesTopotecanToxic effectTranslatingTranslationsTumor TissueViscosityWorkamphiphilicitybiomaterial compatibilitycancer cellcancer typechemotherapyclinical developmentclinical translationcombatcontrolled releasecritical periodcytotoxicitydesigndrug release kineticsdrug release profileeffective therapyexperimental studyfunctional grouphuman diseaseimmunogenicityimplantationimprovedin vivoirinotecanmillimetermortalitymouse modelnanofibernovelpre-clinicalrational designresidenceself assemblyside effecttechnology platformtranslational potentialtreatment strategytumor
项目摘要
Project summary
Malignant gliomas, including the most common type glioblastoma (GBM), are histologically heterogeneous and
invasive tumors known as the most devastating neoplasms with high morbidity and mortality. Despite multimodal
treatment including surgery, radiotherapy, and chemotherapy, the disease inevitably recurs and proves fatal.
Local application of carmustine implants (Gliadel® wafers) as an adjunct to surgery and radiation therapy has
been clinically proven to extend the survival time for patients with malignant gliomas, strongly suggesting that
local chemotherapy after tumor resection presents a feasible and effective strategy to treat brain tumor
patients. However, the rapid depletion of carmustine and low tissue penetration greatly limit the clinical benefits
of Gliadel® wafers, which only extend the median survival of treated patients by six months compared to those
untreated. This proposal aims to develop a novel type of self-assembling nanofiber hydrogels that use the
anticancer drug camptothecin (CPT) as the molecular building blocks and that can be locally administered to the
resection cavities after tumor removal, with the ultimate goal to achieve more effective treatments for patients
diagnosed with malignant gliomas. We hypothesize that the proposed nanofiber hydrogels will spread across
large tissue areas and sustainably release therapeutic agents for long-term cytotoxicity against glioma cells, thus
leading to significantly extended survival time in our rodent model. To test our hypothesis, we outlined the
proposed research activities in the three specific Aims, seeking to address the three key challenges in local
delivery of therapeutic drugs into resection cavities: 1) the nanofiber gelation properties. The gel form enables
prolonged retention in the delivery sites and also minimizes capillary loss of free drugs that would otherwise
occur; 2) the sustained release of free drugs over a long period of time. The release rate and period are
critical for effective elimination of glioma cells without causing devastating side effects; 3) diffusion across large
tissue areas. In Aim 1, we will identify the key molecular parameters in the design of self-assembling CPT DAs
to create CPT nanofibers of varying surface chemistries that would promote the formation of hydrogels upon
contact with body fluids. Aim 2 is focused on the evaluation and fine-tuning of the drug release rate and
mechanism, their ability to overcome the MDR mechanisms, as well as diffusion distance within organotypic
tissues. In Aim 3, we will use an animal model to evaluate the nanofibers’ ability to diffuse across large tissue
areas, pharmacokinetics, in vivo efficacy and toxicity of two already developed nanofiber hydrogels and also
those to be developed in Aim 1 and Aim 2. Our ultimate goal is to develop a nanofiber hydrogel platform
technology that will extend the survival time of rodents bearing human brain cancer, and translate this platform
to a pre-clinical approach.
项目摘要
恶性神经胶质瘤,包括最常见的类型胶质母细胞瘤(GBM),在组织学上是异质的,
侵入性肿瘤被称为最毁灭性的肿瘤,具有高发病率和死亡率。尽管有多模式
治疗包括手术,放疗和化学疗法,这种疾病不可避免地复发并证明是致命的。
局部应用Carmustine Imprans(Gliadel®Wavers)作为手术和放射治疗的辅助
在临床上被证明可以延长恶性神经胶质瘤患者的生存时间,强烈表明
肿瘤切除后局部化疗提出了一种可行有效的治疗脑肿瘤的策略
患者。但是,卡莫斯汀和低组织渗透的迅速部署极大地限制了临床益处
Gliadel®波,仅将治疗患者的中位存活率延长了六个月
未经处理。该建议旨在开发一种新型的自组装纳米纤维水凝胶,用于使用
抗癌药物camptothecin(CPT)作为分子构建块,可以局部给药
肿瘤切除后切除腔,最终目标是为患者获得更有效的治疗方法
被诊断为恶性神经胶质瘤。我们假设所提出的纳米纤维水凝胶将遍布
大组织区域,可持续释放针对神经胶质瘤细胞长期细胞毒性的治疗剂,因此
在我们的啮齿动物模型中导致显着延长生存时间。为了检验我们的假设,我们概述了
在三个特定目标中提出的研究活动,试图应对本地的三个主要挑战
将治疗药物递送到切除腔中:1)纳米纤维胶凝特性。凝胶形式启用
长期保留在交货地点,还可以最大程度地减少免费药物的毛细管损失
发生; 2)长时间持续释放免费药物。释放率和周期是
对于有效消除神经胶质瘤细胞而不会引起毁灭性副作用至关重要; 3)扩散大型
组织区域。在AIM 1中,我们将确定自组装CPT DAS设计中的关键分子参数
创建各种表面化学的CPT纳米纤维,以促进水凝胶的形成
与体液接触。 AIM 2的重点是对药物释放率的评估和微调,
机制,他们克服MDR机制的能力以及有机体内的扩散距离
组织。在AIM 3中,我们将使用动物模型来评估纳米纤维在大型组织中扩散的能力
区域,药代动力学,两个已经开发的纳米纤维水凝胶的体内效率和毒性
那些在AIM 1和AIM 2中开发的。我们的最终目标是开发纳米纤维水凝胶平台
将延长带有人脑癌的啮齿动物的生存时间的技术,并翻译此平台
采用临床前方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Honggang Cui其他文献
Honggang Cui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Honggang Cui', 18)}}的其他基金
Camptothecin Transformative Nanotubes as Effective Drug Carriers
喜树碱转化纳米管作为有效的药物载体
- 批准号:
8959008 - 财政年份:2015
- 资助金额:
$ 52.11万 - 项目类别:
相似国自然基金
构建环状RNA调控肝癌干细胞干性维持的实验动物模型及机制研究
- 批准号:32070533
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
大鼠创伤性颞下颌关节强直实验动物模型的构建及发生机制研究
- 批准号:81970954
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
髌骨脱位后股骨滑车发育不良的实验动物模型研究
- 批准号:81873983
- 批准年份:2018
- 资助金额:75.0 万元
- 项目类别:面上项目
舒张性心衰(HFpEF)的动物模型:机理研究和实验治疗
- 批准号:81770265
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
基于神经中央软骨生长调控的早发性脊柱侧弯矫正模式的动物实验研究
- 批准号:81772422
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 52.11万 - 项目类别:
Mechanisms of Pro-Resolving Mediators in Periodontal Regeneration
牙周再生中促溶解介质的机制
- 批准号:
10764989 - 财政年份:2023
- 资助金额:
$ 52.11万 - 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 52.11万 - 项目类别:
Neural Inflammation and Exercise Pressor Reflex in Heart Failure
心力衰竭中的神经炎症和运动升压反射
- 批准号:
10712202 - 财政年份:2023
- 资助金额:
$ 52.11万 - 项目类别: