Promoting Rapid Uptake of Multilevel Latent Class Modeling via Best Practices: Investigating Heterogeneity in Daily Substance Use Patterns
通过最佳实践促进多级潜在类建模的快速采用:调查日常物质使用模式的异质性
基本信息
- 批准号:10739994
- 负责人:
- 金额:$ 73.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAdderallAddressAdoptionAffectAgeAlcohol consumptionAlcoholsAnxietyAwardBehaviorCannabisCellular PhoneCharacteristicsChronicCodeCollectionComplexComplex MixturesComputer softwareDataData AnalysesData SetDemographic FactorsDevelopmentDevicesDiseaseDisparityDrug abuseEducational workshopEnsureEnvironmentEstimation TechniquesEthnic OriginEtiologyExhibitsFinancial HardshipGuide preventionHeterogeneityIndividualInstitutionInterventionInvestigationKnowledgeLifeManuscriptsMeasurementMethodsModelingOutcomePatternPerformancePersonsPoliciesPreventionPsychosocial FactorPublic HealthRaceResearchResearch PersonnelResourcesRiskRisk FactorsScientistSexual and Gender MinoritiesSiteSocial CharacteristicsSpecific qualifier valueStatistical Data InterpretationStressSubgroupTechniquesTimeTranslatingUnited States Substance Abuse and Mental Health Services AdministrationUrbanicityadvanced analyticsanalytical methodclinically relevantcost estimatediarieshigh riskinnovationlearning materialsnext generationnovelpolysubstance usepsychologicpsychosocialrepositoryresponsesexsubstance misusesubstance usesymposiumtherapy designtraituniversity studentuptakevapingvaping nicotinewebinaryoung adult
项目摘要
PROJECT SUMMARY
Substance use among young adult college students remains a major public health concern, with recent
escalations in nonmedical Adderall use, vaping nicotine, and co-use of alcohol and cannabis. The landscape of
substance use continues to evolve, with new modes of use (e.g., vaping) and rapid legislative changes. Daily
use behaviors can take many forms, defined by number and type of substances used, mode of use, and
quantity used. Further, daily use patterns may be related to both day-level psychosocial factors (e.g., motives,
affect, stress) and person-level characteristics (e.g., sex, race/ethnicity, financial strain). Use of multiple
substances within a day (“co-use”) is increasingly prevalent and confers high risk for acute and chronic
consequences, but is insufficiently studied. The unprecedented amount of high-quality, intensive longitudinal
data (ILD) on substance use and associated risk factors holds critical information that can help explain
substance use etiology and inform the development of the next generation of interventions that are tailored to
those who need it, when they need it. However, advanced methods for analyzing ILD—including multilevel
latent class analysis (MLCA) and multilevel latent transition analysis (MLTA)—are needed to characterize the
heterogeneity of patterns of use that unfold in daily life and to identify novel day-level intervention targets.
These methods enable researchers to discover clinically relevant substance use behavior patterns and day-to-
day transitions, dynamic risk factors embedded in daily life that are associated with problematic use patterns,
and person-level characteristics that indicate for whom these risk factors are most salient. Yet MLCA and
MLTA are underused for ILD analysis, in part due to the dearth of guidance for applied researchers. Guided by
a socio-ecological framework, we will evaluate, apply, and disseminate MLCA and MLTA to analyze ILD,
considering four ways to specify models: marginal modeling, a fully parametric random effects model, a
common factor model, and a non-parametric approach for random effects. We will translate best practices for
applying MLCA (Aim 1) and MLTA (Aim 2) to ILD on substance use and co-use. We will conduct coordinated
MLCA and MLTA of daily data from two large studies of college students (3CAM: n=343, 15,798 person-days;
Project SELF: n=2068, 33,722 person-days). Empirical analyses will disentangle person-level risk factors (e.g.,
trait anxiety) and dynamic risk factors (e.g., morning affect) to isolate potential novel, dynamic intervention
targets. We will examine individual characteristics (e.g., race/ethnicity) as moderators to investigate disparities
and identify group-specific mechanisms. To maximize our overall impact (Aim 3) and ensure broad, rigorous
adoption of MLCA and MLTA, we propose a broad range of dissemination activities to include online
instructional material, a code repository, workshops, and a conference. Findings from studies using these
techniques will guide prevention scientists and clinicians in designing interventions targeting the most salient
risk factors for specific individuals at the best time for intervention.
项目摘要
年轻的成年大学生使用药物仍然是一个主要的公共卫生问题,
非医疗Adderall使用的升级,vaping尼古丁,以及酒精和大麻的共同使用。的景观
物质的使用继续发展,新的使用模式(例如,#21453;,以及快速的立法变革。每日
使用行为可以采取多种形式,由所使用的物质的数量和类型、使用模式和
使用的数量。此外,日常使用模式可能与日常水平的心理社会因素(例如,动机,
影响,压力)和个人水平特征(例如,性别、种族/民族、经济压力)。使用多个
一天之内摄入过量物质(“共同使用”)的现象日益普遍,并带来急性和慢性疾病的高风险。
后果,但研究不够。数量空前的高质量、密集的纵向
关于物质使用和相关风险因素的数据(ILD)包含关键信息,可以帮助解释
物质使用病因学,并为下一代干预措施的制定提供信息,
然而,分析ILD的先进方法-包括多水平
潜在类别分析(MLCA)和多级潜在转换分析(MLTA)-需要表征
研究日常生活中使用模式的异质性,并确定新的日常干预目标。
这些方法使研究人员能够发现临床相关的物质使用行为模式和日常生活,
日间转换,与有问题的使用模式相关的嵌入日常生活中的动态风险因素,
以及个人水平的特征,表明这些风险因素对谁来说最突出。然而,MLCA和
MLTA未充分用于ILD分析,部分原因是缺乏对应用研究人员的指导。指导
一个社会生态框架,我们将评估,应用和传播MLCA和MLTA来分析ILD,
考虑四种指定模型的方法:边际模型,完全参数随机效应模型,
共同因素模型和随机效应的非参数方法。我们将最佳实践转化为
将《MLCA》(目标1)和《MLTA》(目标2)适用于药物使用和共同使用的ILD。我们将进行协调
来自两项大型大学生研究的每日数据的MLCA和MLTA(3CAM:n=343,15,798人-天;
项目SELF:n=2068,33 722人日)。实证分析将理清个人层面的风险因素(例如,
特质焦虑)和动态风险因素(例如,早晨影响),以隔离潜在的新颖、动态干预
目标的我们将研究个体特征(例如,种族/民族)作为调节器,以调查差异
并确定特定群体的机制。为了最大限度地发挥我们的整体影响(目标3),并确保广泛,严格
通过《MLCA》和《MLTA》,我们建议开展广泛的传播活动,包括在线
教学材料、代码库、研讨会和会议。使用这些方法的研究结果
技术将指导预防科学家和临床医生设计针对最突出的
在最佳干预时间对特定个体的风险因素进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHANIE T LANZA其他文献
STEPHANIE T LANZA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHANIE T LANZA', 18)}}的其他基金
Age-Varying Effects in the Epidemiology of Drug Abuse
药物滥用流行病学中的年龄变化影响
- 批准号:
9276648 - 财政年份:2015
- 资助金额:
$ 73.37万 - 项目类别:
Age-Varying Effects in the Epidemiology of Drug Abuse
药物滥用流行病学中的年龄变化影响
- 批准号:
8940295 - 财政年份:2015
- 资助金额:
$ 73.37万 - 项目类别:
Advancing Tobacco Research by Integrating Systems Science and Mixture Models
通过整合系统科学和混合模型推进烟草研究
- 批准号:
8537877 - 财政年份:2012
- 资助金额:
$ 73.37万 - 项目类别:
Advancing Tobacco Research by Integrating Systems Science and Mixture Models
通过整合系统科学和混合模型推进烟草研究
- 批准号:
8708790 - 财政年份:2012
- 资助金额:
$ 73.37万 - 项目类别:
Advancing Tobacco Research by Integrating Systems Science and Mixture Models
通过整合系统科学和混合模型推进烟草研究
- 批准号:
8340121 - 财政年份:2012
- 资助金额:
$ 73.37万 - 项目类别:
Identifying Risk Profiles for Substance Use and Comorbid Behavior
确定药物使用和共病行为的风险概况
- 批准号:
7502099 - 财政年份:2007
- 资助金额:
$ 73.37万 - 项目类别:
Identifying Risk Profiles for Substance Use and Comorbid Behavior
确定药物使用和共病行为的风险概况
- 批准号:
7234649 - 财政年份:2007
- 资助金额:
$ 73.37万 - 项目类别:
Drug Abuse and HIV Prevention Research Methodology Conferences
药物滥用和艾滋病毒预防研究方法会议
- 批准号:
8432872 - 财政年份:2005
- 资助金额:
$ 73.37万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 73.37万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 73.37万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 73.37万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 73.37万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 73.37万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 73.37万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 73.37万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 73.37万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 73.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 73.37万 - 项目类别:
Operating Grants