Harnessing hotspot specific differences among SF3B1 mutations to define novel mechanisms of tumorigenicity and targetability in solid malignancies

利用 SF3B1 突变之间的热点特异性差异来定义实体恶性肿瘤的致瘤性和靶向性的新机制

基本信息

  • 批准号:
    10747548
  • 负责人:
  • 金额:
    $ 3.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY SF3B1 is the most commonly mutated splicing factor in cancer, occurring in thousands of cancer patients annually. Mutations in SF3B1 result in a neomorphic protein that causes aberrant splicing of hundreds of transcripts, including known cancer associated genes. While the mechanisms by which these alterations promote tumorigenesis are incompletely understood, our lab has previously shown SF3B1 mutations are attractive therapeutic targets. SF3B1 mutations are prevalent in many cancers (breast, melanoma, bladder, pancreatic, leukemias), so improving our ability to target these mutations could have major public health implications. To do this, there is a fundamental need to better understand how SF3B1 mutations drive tumorigenesis. Recent work in acute myeloid leukemia shows differences in missplicing, oncogenic effects and prognosis among various SF3B1 hotspot mutations, yet there are no studies to date investigating these in solid malignancies. To determine potential therapeutic strategies, novel model systems are required. An innovative genome editing approach will allow us to study the mutations at the most common hotspots from breast cancer and melanoma, K700 and R625, respectively in several representative cell line models. Changes in the transcriptome and phenotypic differences in proliferation, migration, and invasion will determine whether there are specific alterations in SF3B1 that lead to distinct oncogenic phenotypes. Additionally, preliminary systematic analysis of online cancer databases shows SF3B1 mutations and TP53 alterations are mutually exclusive in cancer. This often suggests either synthetic lethality or a lack of selection for co-occurrence due to shared roles in tumorigenesis. Successful generation of dual SF3B1 mutant and TP53 mutant or TP53 knock out cell lines demonstrates that the mutations are unlikely to be synthetic lethal. Instead, this relationship likely demonstrates a shared role and will allow us to determine novel mechanisms of SF3B1-mediated tumorigenesis. Previous findings in SF3B1 mutants demonstrate dysfunctional cellular respiration due to missplicing and degradation of a UQCC1, a component of mitochondrial complex III. There is a resultant increase in glucose, similar to p53’s well known role in promoting the Warburg effect. Further studying the relationship between mutant SF3B1 and TP53 may identify therapeutic vulnerabilities that can be additionally leveraged against the large subset of cancers with TP53 mutations. The sponsor’s robust history of utilizing genome editing strategies to study individual mutations in breast cancer in conjunction with the abundant resources and core facilities at Vanderbilt University make these Aims achievable. Completion of these aims provide an excellent foundation in cancer molecular genetics. This will allow the PI to acquire the technical skills to build toward an independent investigational career in oncology, specifically studying novel pathologic features of cancers that lead to uniquely targetable vulnerabilities.
项目概要 SF3B1 是癌症中最常见的突变剪接因子,存在于数千名癌症患者中 每年。 SF3B1 突变会产生一种新形态蛋白,导致数百个片段的异常剪接 转录本,包括已知的癌症相关基因。虽然这些改变促进的机制 肿瘤发生机制尚不完全清楚,我们的实验室之前已表明 SF3B1 突变很有吸引力 治疗目标。 SF3B1 突变在许多癌症中普遍存在(乳腺癌、黑色素瘤、膀胱癌、胰腺癌、 白血病),因此提高我们针对这些突变的能力可能会对公共卫生产生重大影响。要做的事 因此,我们迫切需要更好地了解 SF3B1 突变如何驱动肿瘤发生。最近的工作 在急性髓细胞白血病中,各种不同的基因在错误剪接、致癌作用和预后方面表现出差异 SF3B1 热点突变,但迄今为止还没有研究在实体恶性肿瘤中调查这些突变。确定 需要潜在的治疗策略、新颖的模型系统。创新的基因组编辑方法将 使我们能够研究乳腺癌和黑色素瘤最常见热点处的突变,K700 和 R625分别在几个有代表性的细胞系模型中。转录组和表型的变化 增殖、迁移和侵袭的差异将决定是否存在特定的改变 SF3B1 导致不同的致癌表型。此外,对网上的初步系统分析 癌症数据库显示 SF3B1 突变和 TP53 改变在癌症中是相互排斥的。这经常 表明要么是合成致死性,要么是由于在肿瘤发生中的共同作用而缺乏对同时发生的选择。 SF3B1 突变体和 TP53 突变体或 TP53 敲除细胞系的成功生成表明 这些突变不太可能是合成致死的。相反,这种关系可能表现出共同的角色 并使我们能够确定 SF3B1 介导的肿瘤发生的新机制。先前的发现 SF3B1 突变体表现出由于 UQCC1 的错误剪接和降解而导致的细胞呼吸功能障碍, 线粒体复合物 III 的组成部分。由此导致葡萄糖增加,类似于众所周知的 p53 对瓦尔堡效应有促进作用。进一步研究突变体SF3B1与TP53之间的关系可能 确定可以额外利用来对抗大部分癌症的治疗漏洞 TP53 突变。申办者利用基因组编辑策略研究个体突变的悠久历史 结合范德比尔特大学丰富的资源和核心设施,在乳腺癌领域的研究 这些目标是可以实现的。这些目标的完成为癌症分子遗传学奠定了良好的基础。 这将使 PI 获得技术技能,以在以下领域建立独立的调查职业生涯: 肿瘤学,专门研究导致独特靶向的癌症的新病理特征 漏洞。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Riley Bergman其他文献

Riley Bergman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 3.29万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 3.29万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 3.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了