Soluble (pro)renin receptor regulation of kidney fibrosis
可溶性肾素(原)受体对肾纤维化的调节
基本信息
- 批准号:10745143
- 负责人:
- 金额:$ 45.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdenineAdultAffectAffinity ChromatographyAngiotensin IIAttenuatedBindingBiochemicalBlood PressureCRISPR/Cas technologyCell Culture TechniquesCell membraneCell secretionCell surfaceCellsChronic DiseaseChronic Kidney FailureDevelopmentDietDiseaseDisease ProgressionEnzymesEtiologyFibrosisFutureGene ExpressionGene Expression ProfilingGenetic TranscriptionHypertensionIn VitroInflammationInflammatoryInflammatory ResponseInfusion proceduresInjuryInjury to KidneyInterleukin-6KidneyKidney DiseasesLabelLengthMass Spectrum AnalysisMediatingMitochondriaMolecularMorbidity - disease rateMusMutagenesisOxidative PhosphorylationPathogenesisPathway interactionsPatientsPersonsPhysiologicalPlasmaPopulationProteinsProteomicsReceptor, Angiotensin, Type 1RecombinantsRegulationRenal functionReninRenin-Angiotensin-Aldosterone SystemRoleSignal PathwaySignal TransductionSiteStructureSystemTechniquesTimeTubular formationUnited StatesUreteral obstructionVascular Endothelial Cellautocrinecardiovascular risk factorcomparativecomparison controlhypertensivein vivoinflammatory modulationinnovationkidney fibrosismortalitymouse modelmutantnano-stringnectinnovelnovel therapeutic interventionorgan injuryparacrinereceptorresponsetranscriptome sequencingtranscriptomics
项目摘要
ABSTRACT
Chronic kidney disease (CKD) affects an estimated 37 million people in the United States.
CKD progression involves activation of inflammatory and fibrotic responses leading to irreversible
damage and loss of kidney function. The (pro)renin receptor (PRR) is implicated in the
pathogenesis of CKD and can exist as the full length form, bound to cell membrane or be cleaved
to generate a soluble PRR (sPRR) and M8.9 fragments. Although the function of the full-length
PRR both at a molecular and system level has been studied to some extent, the pathophysiologic
role of sPRR in CKD is unknown. This is especially important, since elevated plasma sPRR levels
have been described in patients with CKD and correlates with the stage of CKD. We recently
developed a novel mouse model with absence of sPRR using CRISPR-Cas9 directed
mutagenesis of the PRR cleavage site. Preliminary analyses show mutant sPRR mice have
reduced renal injury, inflammation and fibrosis compared to control mice and may involve
inflammatory signaling and oxidative phosphorylation pathways. The following specific aims will
be addressed:
1. Investigate the pathophysiological role of sPRR in kidney disease. CKD will be induced in
control and mutant sPRR mice using adenine diet or unilateral ureteral obstruction. Renal
function, tubular injury, inflammation and fibrosis will be examined in conjunction with
targeted comparative transcriptomics to identify active signaling pathways.
2. Investigate the cellular mechanisms by which sPRR modulates kidney injury. sPRR
regulation of inflammatory signaling pathways and oxidative phosphorylation and
mitochondrial function will be examined in primary proximal tubule cell culture from control
and mutant sPRR mice in presence of adenine or TGF-. Recombinant sPRR will be added
to control and mutant cells lacking sPRR to examine if restoring sPRR levels reverses the
renoprotective effects.
3. Investigate the molecular interaction partners of sPRR. How sPRR mediates intracellular
cell signaling will be examine by identifying protein-protein interactors through structure-
guided affinity purification and mass-spectrometry and enzyme catalyzed proximity labeling
in HEK293 cells. Mass spectrometry and proteomics analyses will delineate sPRR protein
interaction and signaling under physiological conditions and in kidney disease.
This proposal examines a novel modulator of kidney injury and fibrosis and will delineate the
mechanisms involved in mediating these effects. The integrative approach used herein will
identify systemic and molecular effects of sPRR in fibrosis and may help in the development of a
new therapeutic approach for CKD.
摘要
据估计,美国有3700万人患有慢性肾病(CKD)。
慢性肾脏病进展涉及炎症和纤维化反应的激活,导致不可逆转
肾功能受损和丧失。(Pro)肾素受体(PRR)参与了
CKD的发病机制可以以全长形式存在,结合到细胞膜上或被切割
产生可溶性PRR(SPRR)和M8.9片段。虽然全长的功能
PRR在分子水平和系统水平上都得到了一定程度的研究,其病理生理
SPRR在CKD中的作用尚不清楚。这一点尤其重要,因为血浆sPRR水平升高
已在CKD患者中被描述,并与CKD的分期相关。我们最近
利用CRISPR-Cas9基因建立了一种新型的缺失sPRR的小鼠模型
PRR裂解位点的突变。初步分析显示,突变的sPRR小鼠
与对照组小鼠相比,肾脏损伤、炎症和纤维化程度降低,可能涉及
炎症信号和氧化磷酸化途径。以下具体目标将
收信人:
1.探讨sPRR在肾脏疾病中的病理生理作用。CKD将在
对照组和突变型sPRR小鼠用腺嘌呤饮食或单侧输尿管梗阻。肾
功能、肾小管损伤、炎症和纤维化将与
有针对性的比较转录学,以确定活跃的信号通路。
2.探讨sPRR调节肾损伤的细胞机制。SPRR
炎症信号通路和氧化磷酸化的调节
线粒体功能将在对照的原代近端小管细胞培养中进行检测
和有腺嘌呤或转化生长因子-存在的突变型sprr小鼠。将添加重组sPRR
对照和缺乏sPRR的突变细胞,以检查恢复sPRR水平是否逆转
肾脏保护作用。
3.研究sPRR的分子相互作用伙伴。SPRR如何调节细胞内
细胞信号将通过确定蛋白质-蛋白质相互作用的结构来进行研究。
导向亲和纯化、质谱学和酶催化邻近标记
在HEK293细胞中。质谱学和蛋白质组学分析将描绘sPRR蛋白
生理条件下和肾脏疾病中的相互作用和信号传递。
这项提案研究了一种新的肾脏损伤和纤维化的调节剂,并将描绘出
参与调节这些影响的机制。本文使用的综合方法将
明确sPRR在纤维化中的系统和分子效应,并可能有助于
慢性肾脏病的新治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NIRUPAMA RAMKUMAR其他文献
NIRUPAMA RAMKUMAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NIRUPAMA RAMKUMAR', 18)}}的其他基金
Role of the soluble (pro)renin receptor in blood pressure regulation
可溶性肾素(原)受体在血压调节中的作用
- 批准号:
10298453 - 财政年份:2021
- 资助金额:
$ 45.16万 - 项目类别:
相似海外基金
The Role of Adenine Nucleotide Translocase in Mitochondrial Dysfunction Associated Senescence in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在慢性阻塞性肺病(COPD)线粒体功能相关衰老中的作用
- 批准号:
10633608 - 财政年份:2023
- 资助金额:
$ 45.16万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10534031 - 财政年份:2022
- 资助金额:
$ 45.16万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10794933 - 财政年份:2022
- 资助金额:
$ 45.16万 - 项目类别:
Development of nobel assay methods for miRNA and adenine methyltransferase using FRET
使用 FRET 开发 miRNA 和腺嘌呤甲基转移酶的诺贝尔检测方法
- 批准号:
21K05120 - 财政年份:2021
- 资助金额:
$ 45.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Critical assessment of DNA adenine methylation in brain cells from healthy aging and Alzheimer's disease
健康老龄化和阿尔茨海默病脑细胞 DNA 腺嘌呤甲基化的批判性评估
- 批准号:
10365337 - 财政年份:2021
- 资助金额:
$ 45.16万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10033546 - 财政年份:2020
- 资助金额:
$ 45.16万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10613902 - 财政年份:2020
- 资助金额:
$ 45.16万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10226235 - 财政年份:2020
- 资助金额:
$ 45.16万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10396102 - 财政年份:2020
- 资助金额:
$ 45.16万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10705982 - 财政年份:2020
- 资助金额:
$ 45.16万 - 项目类别: