Metabolic vulnerabilities in cancers with impaired TCA cycle activity
TCA 循环活性受损的癌症的代谢脆弱性
基本信息
- 批准号:10750296
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2027-08-14
- 项目状态:未结题
- 来源:
- 关键词:ATP Citrate (pro-S)-LyaseAdoptedAnabolismAspartateCancer cell lineCell LineCell ProliferationCell SurvivalCellsCitric Acid CycleClear cell renal cell carcinomaCompensationCritical PathwaysDataDependenceDevelopmentEffectivenessEnzymesFumarate HydrataseFumarate Hydratase DeficiencyFunctional disorderGenerationsGenesGeneticGerm-Line MutationGoalsGrowthHumanHyperactivityHypoxiaHypoxia Inducible FactorImpairmentIn VitroInheritedLaboratoriesLeadLightMalignant - descriptorMalignant Epithelial CellMalignant NeoplasmsMeasuresMediatingMemorial Sloan-Kettering Cancer CenterMetabolicMetabolic PathwayMetabolismNeuroendocrine TumorsOutputOxaloacetatesPathway interactionsPatientsPhysiciansPredispositionProductionProliferatingProtein BiosynthesisRenal Cell CarcinomaRouteScientistSignal TransductionSourceSuccinate DehydrogenaseSupporting CellSyndromeTestingTherapeuticTissuesTrainingTumor Suppressor ProteinsVHL geneWorkcancer cellcancer predispositioncareercell growthcell typeclinical trainingcopingexperimental studyin vivoinhibitorloss of function mutationmetabolic profileneoplastic cellnovel strategiesnucleotide metabolismpharmacologicpyruvate dehydrogenasereconstitutiontargeted cancer therapytooltumortumor growthtumor metabolismtumor xenograft
项目摘要
PROJECT SUMMARY
Cancer cells exploit multiple metabolic strategies to generate biosynthetic precursors that fuel malignant
proliferation. Such metabolic redundancy and plasticity hampers effectiveness of therapies that target cancer
cell metabolism and underscores the importance of identifying tumor types most likely to respond to metabolic
inhibitors. The goal of this proposal is to test the hypothesis that tumors with impaired metabolic pathways will
have limited metabolic plasticity in generating critical biosynthetic intermediates, rendering them susceptible to
metabolic inhibition. We focus on the tricarboxylic acid (TCA) cycle, which is a central metabolic hub that
supports cell growth and yet is truncated or impaired in several forms of human renal cell cancer (RCC). A
subset of RCC tumors arise from germline deficiencies in core TCA cycle enzymes succinate dehydrogenase
(SDH) or fumarate hydratase (FH); more commonly, RCC tumors have hyperactive hypoxia-inducible factor
(HIF) signaling that blunts TCA cycle metabolism. The goal of this proposal is to determine whether these
RCC tumors with altered TCA cycle activity are dependent upon ATP citrate lyase (ACL) as an
alternative source of critical metabolic intermediates. Aspartate, synthesized from TCA cycle intermediate
oxaloacetate, supports nucleotide and protein synthesis and has emerged as a critical limitation for tumor
growth. Nevertheless, how tumors with impaired TCA cycle flux sustain aspartate generation—and whether
these compensatory pathways represent a targetable liability—remains largely unknown. My preliminary data
demonstrate that SDH/FH-deficient or HIF-active RCC cells have reduced aspartate pools relative to their
isogenic controls and that ACL inhibition selectively impairs survival of these cells with defective TCA cycle
metabolism. In Aim 1, I will leverage a panel of isogenic RCC lines to test whether genetic and pharmacologic
ACL inhibition specifically impairs growth of SDH-/FH-deficient RCC cells in vitro and in vivo. I will exploit
genetic tools that supply intracellular aspartate to test the hypothesis that aspartate provision underlies the
ACL requirement in SDH-/FH-deficient cells. In Aim 2, I will use RCC cells with hyperactive HIF driven by loss
of the von Hippel Lindau tumor suppressor to determine whether cells with suppressed oxidative TCA cycle
activity depend on ACL to produce aspartate and enable growth in vitro and in vivo. These studies will shed
light not only on a potential metabolic Achilles heel in SDH-/FH-/VHL-null tumors but will also serve as proof of
principle that cancer cells with TCA cycle dysfunction engage ACL as an alternative route of synthesizing
anabolic precursors. The work and training plan outlined in this proposal will be completed in the laboratory of
Dr. Lydia Finley with the co-advisement of Dr. Ross Levine at Memorial Sloan Kettering Cancer Center and will
ideally prepare the applicant for further clinical training and a career as an independent physician-scientist.
项目摘要
癌细胞利用多种代谢策略来产生生物合成前体,以增强恶性肿瘤
增殖。这种代谢冗余和可塑性阻碍了针对癌症的疗法的有效性
细胞代谢,并强调识别最有可能对代谢反应的肿瘤类型的重要性
抑制剂。该提议的目的是检验以下假设:代谢途径受损的肿瘤将
在产生关键的生物合成中间体时,代谢可塑性有限,使它们容易受到影响
代谢抑制。我们专注于三核酸(TCA)周期,这是一个中央代谢枢纽
支持细胞生长,但在几种形式的人肾细胞癌(RCC)中被截断或受损。一个
RCC肿瘤的子集来自核心TCA循环酶琥珀酸酯脱氢酶的种系缺乏症
(SDH)或富马酸水平酶(FH);更常见的是,RCC肿瘤具有多动缺氧诱导因子
(HIF)信号表明钝TCA循环代谢。该提议的目的是确定这些是否是否
TCA循环活性改变的RCC肿瘤取决于ATP柠檬酸裂解酶(ACL)作为一个
关键代谢中间体的替代来源。天冬氨酸,由TCA循环中间体合成
草乙酸,支持核苷酸和蛋白质合成,并已成为肿瘤的关键限制
生长。然而,TCA周期通量受损的肿瘤如何维持天冬氨酸的产生
这些补偿性途径代表了有针对性的责任,这在很大程度上未知。我的初步数据
证明SDH/FH缺乏或HIF活性的RCC细胞相对于它们的天冬氨酸池减少了
等源性对照和ACL抑制选择性损害这些细胞的生存率有缺陷的TCA循环
代谢。在AIM 1中,我将利用一系列等源性RCC线来测试遗传和药理
ACL抑制特异性会损害SDH-/FH缺陷型RCC细胞在体外和体内的生长。我会利用
供应细胞内天冬氨酸以检验天冬氨酸提供的假设的遗传工具是
SDH-/FH缺陷细胞中的ACL需求。在AIM 2中,我将使用损失的RCC单元具有多动HIF驱动的RCC单元
von Hippel -Lindau肿瘤抑制剂的抑制剂,以确定抑制氧化TCA循环的细胞是否
活性取决于ACL产生天冬氨酸并在体外和体内生长。这些研究将丢弃
不仅在SDH-/fh-/vhl-null肿瘤中的潜在代谢性致命弱的脚跟上的光,还可以作为证明
具有TCA循环功能障碍的癌细胞参与ACL作为合成的替代途径的原理
合成代谢前体。该提案中概述的工作和培训计划将在实验室完成
Lydia Finley博士与Ross Levine博士在纪念Sloan Kettering Cancer Center的共同审议和威尔
理想情况下,申请人为进一步的临床培训做好准备,并成为独立的身体科学家的职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abigail Xie其他文献
Abigail Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用合成生物学技术在苯系物高效降解菌中构建多环芳烃代谢通路并定向改造菌株的耐盐能力
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
采用多组学方法研究“补脾益肾、通腑泄浊法”调节肠道菌群与宿主代谢而延缓大鼠CKD进展的机制
- 批准号:81973673
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
采用转录组及代谢组关联解析高山杜鹃典型花色形成的分子机制
- 批准号:31801896
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用同园实验研究青海沙蜥幼体种群间适应环境特征及其形成机制
- 批准号:31501860
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病不同临床亚型患者的大脑差异
- 批准号:81371519
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
ATIC is a novel molecular target in diffuse intrinsic pontine glioma
ATIC是弥漫性内源性脑桥胶质瘤的新型分子靶点
- 批准号:
10712984 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Targeting tumor cell macrophage lipid interactions to overcome resistance to androgen receptor targeted therapy
靶向肿瘤细胞巨噬细胞脂质相互作用以克服对雄激素受体靶向治疗的耐药性
- 批准号:
10651105 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
More Than Mechanical Retention: Characterization of Lactobacillus Clinical Strains Using In Vitro Models
不仅仅是机械保留:使用体外模型表征乳酸菌临床菌株
- 批准号:
10593599 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10432488 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别: