Predicting Attrition from a Lifestyle Medicine Intervention
预测生活方式医学干预的流失
基本信息
- 批准号:10748898
- 负责人:
- 金额:$ 26.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
World Trade Center (WTC) related disorders inflict a major toll on the health and well-being of WTC
responders. These debilitating conditions can be ameliorated or even reversed with lifestyle medicine
programs targeting nutrition and diet, physical activity, sleep, and stress management. Despite their efficacy,
lifestyle medicine programs are constrained by high attrition rates. Adjunctive interventions to increase
retention can be deployed if accurate forecasting algorithms are developed to identify who is most likely to drop
out. Previous studies found a host of demographic and behavioral risk factors for attrition. However, none are
sufficiently strong individually to accurately predict future dropout, and they have not yet been combined into a
validated predictive algorithm. Furthermore, recent technological advances made it possible to identify new
powerful predictors of dropout using objective, passively sensed data (natural language, sleep, and
movement). However, the utility of these passively sensed data for predicting attrition has not been rigorously
proven. To address these gaps, the goal of the current project is to identify psychological and behavioral
factors assessed from self-report, medical exams, and passive sensing that predict attrition in a lifestyle
medicine program. We will use existing infrastructure within the WTC Health Program at Stony Brook
University to assess 800 WTC responders as they enroll in an established 3-month lifestyle medicine program.
At program intake, we will (a) assess established risk factors, (b) record the first treatment visit to obtain
natural language predictors, and (c) give participants a FitBit to wear for 1 week to measure physical activity
and sleep patterns via passive sensing. Our aims are to (1) identify individual predictors of attrition in a lifestyle
medicine program and (2) combine predictors to develop an algorithm to forecast attrition (using machine
learning methods). This study will improve our ability to identify patients at risk of attrition and also characterize
profile of dropout risk across many potential predictors, revealing pathways to attrition that can be targeted by
supportive interventions in future studies (e.g., motivational interviewing, just-in-time adaptive interventions
based on passive sensing data). The proposed project takes the first step to address the problem of high
attrition in lifestyle medicine programs among WTC responders and other patient populations. It will pave the
way for randomized clinical trials of supportive interventions with patients identified by the algorithm as likely to
drop out.
世界贸易中心(WTC)相关的疾病对WTC的健康和福祉造成重大损失
响应者。这些使人衰弱的状况可以通过生活方式医学来改善甚至逆转
针对营养和饮食、体育活动、睡眠和压力管理的计划。尽管它们的功效,
生活方式医学项目受到高流失率的限制。辅助干预措施,
如果开发出准确的预测算法来确定谁最有可能放弃,
出去先前的研究发现了一系列人口统计学和行为风险因素。然而,
足够强大的单独准确地预测未来的辍学,他们还没有被组合成一个
验证预测算法。此外,最近的技术进步使得有可能确定新的
使用客观的、被动感知的数据(自然语言、睡眠和
运动)。然而,这些被动感知的数据用于预测减员的效用尚未得到严格的评估。
证明了为了解决这些差距,目前项目的目标是确定心理和行为
通过自我报告、医学检查和被动感知评估的因素,可预测生活方式中的损耗
医学计划。我们将利用斯托尼布鲁克世贸中心卫生项目的现有基础设施
大学将对800名WTC响应者进行评估,因为他们报名参加了一个为期3个月的生活方式医学项目。
在项目开始时,我们将(a)评估确定的风险因素,(B)记录首次治疗访视,以获得
自然语言预测器,以及(c)给参与者一个FitBit,让他们戴上一周来测量身体活动
和睡眠模式。我们的目标是(1)确定个人的预测磨损的生活方式
医学程序和(2)结合联合收割机预测开发算法来预测磨损(使用机器
学习方法)。这项研究将提高我们识别有磨损风险的患者的能力,
许多潜在预测因素的辍学风险概况,揭示了可以通过以下方法针对的流失途径:
未来研究中的支持性干预(例如,动机访谈,及时适应性干预
基于无源感测数据)。拟议项目采取第一步,以解决高
在WTC反应者和其他患者人群中的生活方式医学项目的损耗。它将铺平道路
支持性干预措施的随机临床试验的方法,患者由算法确定为可能
退学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman I Kotov其他文献
Roman I Kotov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman I Kotov', 18)}}的其他基金
Trajectories of Aging in Psychotic Disorders Over 27 Years
27 年来精神障碍的衰老轨迹
- 批准号:
9155892 - 财政年份:2016
- 资助金额:
$ 26.23万 - 项目类别:
Trajectories of Aging in Psychotic Disorders Over 27 Years
27 年来精神障碍的衰老轨迹
- 批准号:
9916166 - 财政年份:2016
- 资助金额:
$ 26.23万 - 项目类别:
Personality-informed care model for 9/11-related comorbid conditions
针对 9/11 相关共病的个性化护理模型
- 批准号:
9342734 - 财政年份:2016
- 资助金额:
$ 26.23万 - 项目类别:
Trajectories of Aging in Psychotic Disorders Over 27 Years
27 年来精神障碍的衰老轨迹
- 批准号:
9335987 - 财政年份:2016
- 资助金额:
$ 26.23万 - 项目类别:
Trajectories of Aging in Psychotic Disorders Over 27 Years
27 年来精神障碍的衰老轨迹
- 批准号:
9767279 - 财政年份:2016
- 资助金额:
$ 26.23万 - 项目类别:
The Daily Burden of PTSD and Respiratory Problems in World Trade Center Responder
世贸中心急救人员每日承受的创伤后应激障碍和呼吸系统问题
- 批准号:
8924804 - 财政年份:2014
- 资助金额:
$ 26.23万 - 项目类别:
相似海外基金
Language Attrition Across Fifty Years and Five Languages
五十年来五种语言的语言损耗
- 批准号:
23K25339 - 财政年份:2024
- 资助金额:
$ 26.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Language Attrition Across Fifty Years and Five Languages
五十年来五种语言的语言损耗
- 批准号:
23H00642 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Genetic, environmental, and pharmacological determinants of telomere attrition rates: Implications for the prevention of age-related multimorbidity
端粒损耗率的遗传、环境和药理学决定因素:对预防与年龄相关的多发病的影响
- 批准号:
MR/W028018/1 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Research Grant
The role of length of residency in first language grammatical attrition
居住时间长短对母语语法损耗的影响
- 批准号:
2890794 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Studentship
Spatial Variation in Insurance Policy Attrition: A Case Study in Spatial Survival Analysis
保单损耗的空间变异:空间生存分析的案例研究
- 批准号:
572951-2022 - 财政年份:2022
- 资助金额:
$ 26.23万 - 项目类别:
University Undergraduate Student Research Awards
Medication for Opioid Use Disorder, Predictability of Retention vs Attrition
阿片类药物使用障碍的药物、保留与流失的可预测性
- 批准号:
10595456 - 财政年份:2022
- 资助金额:
$ 26.23万 - 项目类别:
Mechanism of telomere attrition and premature T cell aging during HCV infection
HCV感染过程中端粒磨损和T细胞过早衰老的机制
- 批准号:
10745519 - 财政年份:2022
- 资助金额:
$ 26.23万 - 项目类别:
Mechanism of telomere attrition and premature T cell aging during HIV infection.
HIV 感染期间端粒磨损和 T 细胞过早衰老的机制。
- 批准号:
10402449 - 财政年份:2022
- 资助金额:
$ 26.23万 - 项目类别:
Attrition in pediatric obesity management: A randomized feasibility study
儿童肥胖管理中的自然减员:一项随机可行性研究
- 批准号:
445004 - 财政年份:2021
- 资助金额:
$ 26.23万 - 项目类别:
Operating Grants
HSI Planning Project: Development of an Early Attrition Predictive Model for STEM Majors at a Major Hispanic-Serving Institution
HSI 规划项目:为一家主要西班牙裔服务机构的 STEM 专业学生开发早期流失预测模型
- 批准号:
2115960 - 财政年份:2021
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant