Using NAD+ precursor for treatment of global cerebral ischemia
利用NAD前体治疗全脑缺血
基本信息
- 批准号:10622615
- 负责人:
- 金额:$ 38.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Brain InjuriesAffectAnimal ModelAnimalsBalanBioenergeticsBrainBrain InjuriesCatabolismCell DeathCell Death ProcessCerebral IschemiaClinicalCognitiveComplexConsumptionDataDeacetylaseDeacetylationDeath RateDoseEmotionalEnzymesEstrous CycleFailureFemaleGenerationsGlutamate-ammonia-ligase adenylyltransferaseGoalsGrantHeart ArrestHistologicImpairmentInjuryIschemiaIschemic Brain InjuryMetabolismMitochondriaMitochondrial ProteinsMusMyocardial InfarctionNerve DegenerationNeurologicNeurological outcomeNeuronsNicotinamide MononucleotidePathologicPathway interactionsPilot ProjectsPoly Adenosine Diphosphate RibosePost-Translational Protein ProcessingProcessProductionProsencephalonProtein AcetylationProteinsProtocols documentationPublishingReactionRecoveryRegulationResearchRoleSIRT1 geneSirtuinsStrokeSurvivorsTestingTherapeuticTimeTransgenic AnimalsTreatment EfficacyTreatment ProtocolsWorkagedaging populationbrain cellcell typeclinical applicationcofactorcognitive testingeffective therapyeffectiveness evaluationefficacy evaluationimprovedinhibitorinsightknockout animalmaleneuron lossneuroprotectionpre-clinical researchpreservationprotective effectprotein expressionpsychologicstroke outcomestroke victimstherapy developmenttooltreatment strategy
项目摘要
Summary:
Ischemic brain damage due to cardiac arrest or stroke is one of the most complex pathophysiologic
processes. To successfully treat ischemic brain injury, one need to target several cellular pathways and
cell-type within the brain.
NAD+ is an essential cofactor involved in multiple bioenergetic reactions and its degradation
after ischemia leads to pathologic cellular metabolism and inhibition of energy production. The majority
of cellular NAD+ is re-synthetized via the salvage pathway, where nicotinamide mononucleotide (NMN)
is converted to NAD+. Our recent studies demonstrated that administration of NMN dramatically
ameliorates ischemic brain injury following transient global cerebral ischemia. Furthermore, NMN
treatment inhibited post-ischemic NAD+ catabolism, reduced poly-ADP-ribose generation, and reversed
the excessive mitochondrial fragmentation. Finally, the ischemia-induced changes in mitochondrial
protein acetylation were inhibited in NMN injected animals. Overall goal of this proposed project is to
develop the most effective treatment strategy utilizing NMN that will dramatically reduce ischemic brain
damage and characterize the mechanism of its neuroprotection. We hypothesize that NMN
administration after ischemia will significantly inhibit neurodegeneration due to its multi-targeted effect
and ability to improve mitochondrial functions and cellular bioenergetics.
Specific Aim 1 is focused on the NMN-induced protein acetylation mechanisms that modulate
mitochondrial dynamics and function. The role of Sirt1 and Sirt3 dependent deacetylation in
mitochondrial fusion and fission will be determined using our transgenic animal models that
concomitantly express mitochondria targeted eYFP and Sirt1 or Sirt3. Additionally, SIRT1, and SIRT3
knockout animals will be used as tools for inhibition of deacetylase activity. In specific Aim 2, we will
perform time-dependent studies of NMN administration following global cerebral ischemia in mice. We
will use unbiased stereological quantification of neuronal cell death, and multiple cognitive tests will be
performed to assess the efficacy of treatment. The recovery periods will vary from 7 days up to 6
months after ischemic insult. In specific Aim 3, we will determine the neuroprotective effect of the NMN
treatment by using the most neuroprotective protocol determined in Aim 2 on female and aged animals.
The significance of this work is that it proposes to identify NMN as a protective compound that
will significantly impact the clinical application of NAD+ precursors as therapeutic compounds for acute
brain injury and potentially reveal new targets for neuroprotection.
总结:
由于心脏骤停或中风引起的缺血性脑损伤是最复杂的病理生理学之一,
流程.为了成功治疗缺血性脑损伤,需要靶向几种细胞通路,
脑内的细胞类型。
NAD+是参与多种生物能量反应及其降解的重要辅因子
局部缺血后导致病理性细胞代谢和能量产生抑制。大多数
的细胞NAD+通过补救途径重新合成,其中烟酰胺单核苷酸(NMN)
转化为NAD+。我们最近的研究表明,NMN的管理显着
改善短暂性全脑缺血后的缺血性脑损伤。此外,NMN
治疗抑制缺血后NAD+ catalysts,减少聚ADP-核糖的产生,并逆转
过度的线粒体碎裂最后,缺血诱导的线粒体变化
蛋白乙酰化在注射NMN的动物中受到抑制。本拟议项目的总体目标是
开发最有效的治疗策略,利用NMN,将大大减少缺血性脑
损伤并表征其神经保护机制。我们假设NMN
由于其多靶点作用,缺血后给药将显着抑制神经退行性变
以及改善线粒体功能和细胞生物能量学的能力。
具体目标1集中在NMN诱导的蛋白乙酰化机制,调节
线粒体动力学和功能。Sirt 1和Sirt 3依赖性去乙酰化在
线粒体融合和分裂将使用我们的转基因动物模型来确定,
同时表达线粒体靶向的eYFP和Sirt 1或Sirt 3。SIRT 1和SIRT 3
敲除动物将用作抑制脱乙酰酶活性的工具。具体目标2:
在小鼠全脑缺血后进行NMN给药的时间依赖性研究。我们
将使用无偏的神经元细胞死亡的体视学定量,多个认知测试将
以评估治疗效果。恢复期将从7天到6天不等
缺血性损伤后3个月。在具体目标3中,我们将确定NMN的神经保护作用。
通过使用目标2中确定的最具神经保护性的方案对雌性和老年动物进行治疗。
这项工作的意义在于,它提出将NMN鉴定为保护性化合物,
这将显著影响NAD+前体作为急性胰腺炎的治疗化合物的临床应用。
脑损伤,并可能揭示神经保护的新靶点。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Melatonin and andrographolide synergize to inhibit the colospheroid phenotype by targeting Wnt/beta-catenin signaling.
- DOI:10.1111/jpi.12808
- 发表时间:2022-08
- 期刊:
- 影响因子:10.3
- 作者:
- 通讯作者:
Acetylation in Mitochondria Dynamics and Neurodegeneration.
- DOI:10.3390/cells10113031
- 发表时间:2021-11-05
- 期刊:
- 影响因子:6
- 作者:Waddell J;Banerjee A;Kristian T
- 通讯作者:Kristian T
Brain ethanol metabolism and mitochondria.
脑乙醇代谢和线粒体。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Waddell,Jaylyn;McKenna,MaryC;Kristian,Tibor
- 通讯作者:Kristian,Tibor
Perturbed Brain Glucose Metabolism Caused by Absent SIRT3 Activity.
- DOI:10.3390/cells10092348
- 发表时间:2021-09-08
- 期刊:
- 影响因子:6
- 作者:Kristian T;Karimi AJ;Fearnow A;Waddell J;McKenna MC
- 通讯作者:McKenna MC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIBOR KRISTIAN其他文献
TIBOR KRISTIAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIBOR KRISTIAN', 18)}}的其他基金
Using NAD+ precursor for treatment of global cerebral ischemia
利用NAD前体治疗全脑缺血
- 批准号:
10294661 - 财政年份:2021
- 资助金额:
$ 38.63万 - 项目类别:
Using NAD+ precursor for treatment of global cerebral ischemia
利用NAD前体治疗全脑缺血
- 批准号:
10439887 - 财政年份:2021
- 资助金额:
$ 38.63万 - 项目类别:
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
- 批准号:
10618865 - 财政年份:2020
- 资助金额:
$ 38.63万 - 项目类别:
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
- 批准号:
9889770 - 财政年份:2020
- 资助金额:
$ 38.63万 - 项目类别:
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
- 批准号:
10454777 - 财政年份:2020
- 资助金额:
$ 38.63万 - 项目类别:
ShEEP Request for Keyence BZ-X800E All-in-One Automated Imaging System
ShEEP 请求 Keyence BZ-X800E 一体化自动化成像系统
- 批准号:
9793454 - 财政年份:2019
- 资助金额:
$ 38.63万 - 项目类别:
NAD catabolism and mitochondrial dysfunction in acute neurodegenerative disease
急性神经退行性疾病中 NAD 分解代谢和线粒体功能障碍
- 批准号:
8398920 - 财政年份:2011
- 资助金额:
$ 38.63万 - 项目类别:
NAD catabolism and mitochondrial dysfunction in acute neurodegenerative disease
急性神经退行性疾病中 NAD 分解代谢和线粒体功能障碍
- 批准号:
8696791 - 财政年份:2011
- 资助金额:
$ 38.63万 - 项目类别:
NAD catabolism and mitochondrial dysfunction in acute neurodegenerative disease
急性神经退行性疾病中 NAD 分解代谢和线粒体功能障碍
- 批准号:
8246297 - 财政年份:2011
- 资助金额:
$ 38.63万 - 项目类别:
NAD catabolism and mitochondrial dysfunction in acute neurodegenerative disease
急性神经退行性疾病中 NAD 分解代谢和线粒体功能障碍
- 批准号:
8043311 - 财政年份:2011
- 资助金额:
$ 38.63万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 38.63万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 38.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 38.63万 - 项目类别:
Studentship














{{item.name}}会员




