Deciphering fundamental biological processes involving protein-nucleic acid interactions at the molecular level
破译涉及分子水平上蛋白质-核酸相互作用的基本生物过程
基本信息
- 批准号:10622948
- 负责人:
- 金额:$ 26.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnti-Bacterial AgentsAntimicrobial ResistanceBacteriaBiochemistryBiologicalBiological ProcessCessation of lifeComplexCryoelectron MicroscopyCuesDNADNA Repair PathwayDevelopmentEnzymesGenetic TranscriptionGlutamate-Ammonia LigaseGoalsGram-Positive BacteriaHealthHumanInvestigationLife Cycle StagesLinkMetabolic PathwayMicrobeMitochondriaMolecularMulti-Drug ResistanceNitrogenNucleic AcidsNutrient availabilityPathogenesisPharmaceutical PreparationsProcessProteinsProtozoaRNA EditingSecond Messenger SystemsSignal PathwaySignal TransductionSourceStreptomycesStructureTherapeuticantimicrobial drugbacterial resistancecombatdrug resistant microorganismenvironmental changein vivointerestmicrobialmicrobial diseasenovelphosphoric diester hydrolaserational designtherapeutic target
项目摘要
ABSTRACT
The central goal of the Schumacher lab is to deduce molecular principles governing fundamental biological
processes involving protein-nucleic acid interactions. These investigations focus on processes in microbes and
intersect with the lab’s interests in microbial pathogenesis. Indeed, while the main goal is to elucidate biological
mechanisms at the atomic level, these studies also provide potential targets for the development of urgently
needed antimicrobial agents. Alarmingly, recent estimates suggest that deaths from antimicrobial resistance
bacteria may exceed 10 million deaths worldwide by 2050 if steps are not taken to generate new treatments.
The specific processes we investigate include transcription, DNA organization and RNA editing. Bacteria must
be able to sense and respond to environmental changes for their survival and in some cases, proper
development, so our studies on transcription focus on important networks and address how environmental
cues are signaled and detected by transcription switches. Streptomyces bacteria represent the main source of
antibacterial and other key drugs, which they generate concomitant with development. Thus, understanding
their developmental lifecycle has been of significant interest for decades, although it is a mystery what drives
this process. Our studies in the last few years have revealed that this developmental switch is controlled by the
second messenger, c-di-GMP, functioning through two global transcription regulators, BldD and WhiG. These
regulators control the first and second steps in Streptomyces development, respectively, but how c-di-GMP
levels are sensed and signaled to these regulators are unknown and is a question we will address in this
proposal. Initial studies unveiled a possible link between WhiG and a c-di-GMP phosphodiesterase, possibly
indicating colocalization as a mechanism to control the second developmental step, which we will investigate.
Studies will also be performed to analyze c-di-GMP levels and identify and characterize additional c-di-GMP
modulated developmental regulators. Using a combination of cryo-EM, biochemistry and in vivo studies, we will
also dissect the molecular mechanism by which nitrogen levels are sensed in Gram-positive bacteria by the
novel Glutamine Synthetase-GlnR signaling pathway whereby the central enzyme for a metabolic pathway
(GS) directly transduces nutrient availability to its master transcription regulator (GlnR). Finally, we will
elucidate the signal and mechanism behind the first SOS-independent DNA repair pathway in bacteria.
Another focus of the lab is the unusual RNA editing process in the mitochondria of kinetoplastid parasitic
protozoans called kinetoplastid RNA (kRNA) editing. A recently identified accessory complex, the MRB1
complex, is required for this process. However, the structure and mechanisms of action of this complex are
completely unknown. We will obtain structures of this complex and dissect its various molecular functions in
editing. These combined studies will elucidate fundamental biological processes at the molecular level, leading
to the discovery of potential chemotherapeutic targets against microbial diseases.
摘要
舒马赫实验室的中心目标是推导出控制基本生物学的分子原理
涉及蛋白质-核酸相互作用的过程。这些研究集中在微生物的过程,
与实验室对微生物致病机理的兴趣有交集事实上,虽然主要目标是阐明生物学
在原子水平上的机制,这些研究也提供了迫切发展的潜在目标,
需要抗菌药物。令人担忧的是,最近的估计表明,
如果不采取措施产生新的治疗方法,到2050年,全世界死于细菌的人数可能超过1 000万。
我们研究的具体过程包括转录,DNA组织和RNA编辑。细菌必须
能够感知和应对环境变化,以生存,在某些情况下,
因此,我们对转录的研究集中在重要的网络上,并解决环境如何影响转录的问题。
通过转录开关发出信号并检测提示。链霉菌属细菌代表了
抗菌药物和其他关键药物,它们是伴随着发展而产生的。因此,理解
它们的发育生命周期几十年来一直受到人们的极大关注,尽管是什么驱动了它们的发育生命周期还是一个谜。
这个过程我们在过去几年的研究表明,这种发育开关是由
第二信使,c-di-GMP,通过两个全球转录调节因子BldD和WhiG发挥作用。这些
调节剂控制链霉菌发展的第一和第二步,分别,但如何c-di-GMP
水平的感应和信号,这些监管机构是未知的,这是一个问题,我们将解决在这一点上,
提议最初的研究揭示了WhiG和c-di-GMP磷酸二酯酶之间的可能联系,
表明共定位作为一种机制,以控制第二个发展步骤,我们将调查。
还将进行研究,以分析c-di-GMP水平,并识别和表征其他c-di-GMP
调节发育调节因子。使用冷冻EM,生物化学和体内研究的组合,我们将
还剖析了革兰氏阳性菌中氮水平被检测的分子机制,
新的谷氨酰胺合成酶-GlnR信号通路,其中代谢通路的中心酶
(GS)直接将养分有效性转换为其主转录调节因子(GlnR)。最后我们将
阐明细菌中第一个SOS非依赖性DNA修复途径背后的信号和机制。
该实验室的另一个重点是动质体寄生虫线粒体中不寻常的RNA编辑过程。
称为动质体RNA(kRNA)编辑。最近发现的一种附属复合体,MRB 1
这一过程需要复杂。然而,这种复合物的结构和作用机制是不确定的。
完全未知我们将获得这种复合物的结构,并剖析其各种分子功能,
编辑.这些综合研究将在分子水平上阐明基本的生物学过程,
发现潜在的针对微生物疾病的化疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Schumacher其他文献
Maria Schumacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Schumacher', 18)}}的其他基金
Deciphering fundamental biological processes involving protein-nucleic acid interactions at the molecular level
破译涉及分子水平上蛋白质-核酸相互作用的基本生物过程
- 批准号:
10543420 - 财政年份:2019
- 资助金额:
$ 26.84万 - 项目类别:
Deciphering fundamental biological processes involving protein-nucleic acid interactions at the molecular level
破译涉及分子水平上蛋白质-核酸相互作用的基本生物过程
- 批准号:
10319963 - 财政年份:2019
- 资助金额:
$ 26.84万 - 项目类别:
Assembly and partition mechanism of Walker-box based segregation machinery
基于Walker-box的分离机械的组装和分离机构
- 批准号:
8941756 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Complete atomic dissection of the B. subtilis nitrogen regulatory pathway
枯草芽孢杆菌氮调节途径的完整原子解剖
- 批准号:
9313913 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Complete atomic dissection of the B. subtilis nitrogen regulatory pathway
枯草芽孢杆菌氮调节途径的完整原子解剖
- 批准号:
9118245 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Protein Design, Expression and Purification Core
蛋白质设计、表达和纯化核心
- 批准号:
8931201 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Assembly and partition mechanism of Walker-box based segregation machinery
基于Walker-box的分离机械的组装和分离机构
- 批准号:
9118256 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Structural mechanism of DNA segregation by the pSK41 par system
pSK41 par系统DNA分离的结构机制
- 批准号:
8236042 - 财政年份:2009
- 资助金额:
$ 26.84万 - 项目类别:
Structural mechanism of DNA segregation by the pSK41 par system
pSK41 par系统DNA分离的结构机制
- 批准号:
7728001 - 财政年份:2009
- 资助金额:
$ 26.84万 - 项目类别:
相似海外基金
New technologies for targeted delivery of anti-bacterial agents
抗菌药物靶向递送新技术
- 批准号:
1654774 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Studentship
Targeting bacterial phosphatases for novel anti-bacterial agents.
针对细菌磷酸酶的新型抗菌剂。
- 批准号:
8416313 - 财政年份:2012
- 资助金额:
$ 26.84万 - 项目类别:
Targeting bacterial phosphatases for novel anti-bacterial agents.
针对细菌磷酸酶的新型抗菌剂。
- 批准号:
8298885 - 财政年份:2012
- 资助金额:
$ 26.84万 - 项目类别:














{{item.name}}会员




