Deciphering fundamental biological processes involving protein-nucleic acid interactions at the molecular level
破译涉及分子水平上蛋白质-核酸相互作用的基本生物过程
基本信息
- 批准号:10622948
- 负责人:
- 金额:$ 26.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnti-Bacterial AgentsAntimicrobial ResistanceBacteriaBiochemistryBiologicalBiological ProcessCessation of lifeComplexCryoelectron MicroscopyCuesDNADNA Repair PathwayDevelopmentEnzymesGenetic TranscriptionGlutamate-Ammonia LigaseGoalsGram-Positive BacteriaHealthHumanInvestigationLife Cycle StagesLinkMetabolic PathwayMicrobeMitochondriaMolecularMulti-Drug ResistanceNitrogenNucleic AcidsNutrient availabilityPathogenesisPharmaceutical PreparationsProcessProteinsProtozoaRNA EditingSecond Messenger SystemsSignal PathwaySignal TransductionSourceStreptomycesStructureTherapeuticantimicrobial drugbacterial resistancecombatdrug resistant microorganismenvironmental changein vivointerestmicrobialmicrobial diseasenovelphosphoric diester hydrolaserational designtherapeutic target
项目摘要
ABSTRACT
The central goal of the Schumacher lab is to deduce molecular principles governing fundamental biological
processes involving protein-nucleic acid interactions. These investigations focus on processes in microbes and
intersect with the lab’s interests in microbial pathogenesis. Indeed, while the main goal is to elucidate biological
mechanisms at the atomic level, these studies also provide potential targets for the development of urgently
needed antimicrobial agents. Alarmingly, recent estimates suggest that deaths from antimicrobial resistance
bacteria may exceed 10 million deaths worldwide by 2050 if steps are not taken to generate new treatments.
The specific processes we investigate include transcription, DNA organization and RNA editing. Bacteria must
be able to sense and respond to environmental changes for their survival and in some cases, proper
development, so our studies on transcription focus on important networks and address how environmental
cues are signaled and detected by transcription switches. Streptomyces bacteria represent the main source of
antibacterial and other key drugs, which they generate concomitant with development. Thus, understanding
their developmental lifecycle has been of significant interest for decades, although it is a mystery what drives
this process. Our studies in the last few years have revealed that this developmental switch is controlled by the
second messenger, c-di-GMP, functioning through two global transcription regulators, BldD and WhiG. These
regulators control the first and second steps in Streptomyces development, respectively, but how c-di-GMP
levels are sensed and signaled to these regulators are unknown and is a question we will address in this
proposal. Initial studies unveiled a possible link between WhiG and a c-di-GMP phosphodiesterase, possibly
indicating colocalization as a mechanism to control the second developmental step, which we will investigate.
Studies will also be performed to analyze c-di-GMP levels and identify and characterize additional c-di-GMP
modulated developmental regulators. Using a combination of cryo-EM, biochemistry and in vivo studies, we will
also dissect the molecular mechanism by which nitrogen levels are sensed in Gram-positive bacteria by the
novel Glutamine Synthetase-GlnR signaling pathway whereby the central enzyme for a metabolic pathway
(GS) directly transduces nutrient availability to its master transcription regulator (GlnR). Finally, we will
elucidate the signal and mechanism behind the first SOS-independent DNA repair pathway in bacteria.
Another focus of the lab is the unusual RNA editing process in the mitochondria of kinetoplastid parasitic
protozoans called kinetoplastid RNA (kRNA) editing. A recently identified accessory complex, the MRB1
complex, is required for this process. However, the structure and mechanisms of action of this complex are
completely unknown. We will obtain structures of this complex and dissect its various molecular functions in
editing. These combined studies will elucidate fundamental biological processes at the molecular level, leading
to the discovery of potential chemotherapeutic targets against microbial diseases.
抽象的
Schumacher实验室的核心目标是推论基本生物学的分子原理
过程涉及蛋白质核酸相互作用。这些调查的重点是微生物的过程和
与实验室对微生物发病机理的利益相交。确实,主要目标是阐明生物学
原子水平的机制,这些研究还为紧急发展提供了潜在的目标
需要抗菌剂。令人震惊的是,最近的估计表明抗菌素耐药性死亡
如果不采取新的治疗,到2050年,细菌可能会超过全球死亡。
我们研究的特定过程包括转录,DNA组织和RNA编辑。细菌必须
能够感知并应对其生存的环境变化,在某些情况下,适当
开发,因此我们对转录的研究集中在重要的网络上,并解决环境
提示由转录开关签名和检测。链霉菌细菌是主要来源
抗菌和其他关键药物,它们与发育伴随着。那,理解
几十年来,他们的发展生命周期一直引起人们的兴趣,尽管这是一个神秘的驱动力
这个过程。在过去的几年中,我们的研究表明,这种发展开关由
第二使者C-DI-GMP通过两个全局转录调节器BLDD和WHIG运行。这些
监管机构分别控制链霉菌开发的第一和第二步骤,但如何C-DI-GMP
感知并签署了这些调节器的水平是未知的,这是我们将在此解决的问题
提议。初步研究揭示了辉格酶与C-DI-GMP磷酸二酯酶之间的可能联系,可能
表明共定位是控制第二步的一种机制,我们将研究。
还将进行研究以分析C-DI-GMP水平并识别和表征其他C-DI-GMP
调制发育监管机构。结合冷冻EM,生物化学和体内研究,我们将
还剖析了分子机制,通过该机制在革兰氏阳性细菌中被氮水平通过
新型谷氨酰胺合成酶GLNR信号传导途径,该途径为代谢途径的中心酶
(GS)将养分的可用性直接传递到其主转录调节剂(GLNR)。最后,我们会的
阐明细菌中第一个独立于SOS的DNA修复途径背后的信号和机制。
实验室的另一个重点是动力质体寄生的线粒体中的异常RNA编辑过程
原生动物称为动型塑料RNA(KRNA)编辑。最近确定的附件综合体MRB1
复合物是此过程所必需的。但是,该复合物的作用结构和机制是
完全未知。我们将获得该复合物的结构,并在其中剖析其各种分子功能
编辑。这些合并的研究将阐明分子水平的基本生物学过程
发现针对微生物疾病的潜在化学治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Schumacher其他文献
Maria Schumacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Schumacher', 18)}}的其他基金
Deciphering fundamental biological processes involving protein-nucleic acid interactions at the molecular level
破译涉及分子水平上蛋白质-核酸相互作用的基本生物过程
- 批准号:
10543420 - 财政年份:2019
- 资助金额:
$ 26.84万 - 项目类别:
Deciphering fundamental biological processes involving protein-nucleic acid interactions at the molecular level
破译涉及分子水平上蛋白质-核酸相互作用的基本生物过程
- 批准号:
10319963 - 财政年份:2019
- 资助金额:
$ 26.84万 - 项目类别:
Assembly and partition mechanism of Walker-box based segregation machinery
基于Walker-box的分离机械的组装和分离机构
- 批准号:
8941756 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Complete atomic dissection of the B. subtilis nitrogen regulatory pathway
枯草芽孢杆菌氮调节途径的完整原子解剖
- 批准号:
9313913 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Complete atomic dissection of the B. subtilis nitrogen regulatory pathway
枯草芽孢杆菌氮调节途径的完整原子解剖
- 批准号:
9118245 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Protein Design, Expression and Purification Core
蛋白质设计、表达和纯化核心
- 批准号:
8931201 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Assembly and partition mechanism of Walker-box based segregation machinery
基于Walker-box的分离机械的组装和分离机构
- 批准号:
9118256 - 财政年份:2015
- 资助金额:
$ 26.84万 - 项目类别:
Structural mechanism of DNA segregation by the pSK41 par system
pSK41 par系统DNA分离的结构机制
- 批准号:
8236042 - 财政年份:2009
- 资助金额:
$ 26.84万 - 项目类别:
Structural mechanism of DNA segregation by the pSK41 par system
pSK41 par系统DNA分离的结构机制
- 批准号:
7728001 - 财政年份:2009
- 资助金额:
$ 26.84万 - 项目类别:
相似国自然基金
三种凤尾蕨属植物中吡咯生物碱及其抗菌和抗HCV病毒功能研究
- 批准号:82360689
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
基于乏氧增强型超声抗菌剂的细菌生物膜感染协同治疗研究
- 批准号:22375101
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非典型I-型聚酮类抗菌剂NFAT-133的芳构化机理
- 批准号:32211530074
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:82202575
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel single-cell mass spectrometry methods to assess the role of intracellular drug concentration and metabolism in antimicrobial treatment failure
评估细胞内药物浓度和代谢在抗菌治疗失败中的作用的新型单细胞质谱方法
- 批准号:
10714351 - 财政年份:2023
- 资助金额:
$ 26.84万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 26.84万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 26.84万 - 项目类别:
New roles of IFN-inducible OAS proteins in innate immune defense against bacterial infections
IFN诱导的OAS蛋白在针对细菌感染的先天免疫防御中的新作用
- 批准号:
10649771 - 财政年份:2023
- 资助金额:
$ 26.84万 - 项目类别:
Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
- 批准号:
10750473 - 财政年份:2023
- 资助金额:
$ 26.84万 - 项目类别: