Eukaryotic RNA NAD capping and deNADding
真核 RNA NAD 加帽和 deNADding
基本信息
- 批准号:10622526
- 负责人:
- 金额:$ 36.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-27 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAmino AcidsAreaBacteriaBiologicalBiological ModelsBiological ProcessBiologyCOVID-19Cell NucleusCell physiologyCellsCellular StressComplexCytoplasmDNADataDiseaseElementsEnzymesEukaryotaEukaryotic CellExcisionGene ExpressionGenetic TranscriptionGrowthHomeostasisHumanIn VitroLinkMammalian CellMessenger RNAMetabolic stressMetabolismMitochondriaMitochondrial ProteinsMitochondrial RNAMolecularNicotinamide adenine dinucleotideNuclearNuclear DecayNuclear RNANutrientOrganismPathway interactionsPhysiologicalPlayPost-Transcriptional RegulationProcessPublishingRNARNA CapsRNA DecayRNA Polymerase IIRNA metabolismRNA vaccineRegulationResearchRespirationRoleSaccharomyces cerevisiaeSaccharomycetalesStarvationStressTestingTherapeuticTranscriptVirusWorkYeastsdecapping enzymedefined contributionepitranscriptomicsgenetic informationinsightmitochondrial dysfunctionnovelnovel strategiesnucleasepoly A specific exoribonucleaseresponsesenescencesugartransmission process
项目摘要
RNA 5′ end capping provides a layer of “epitranscriptomic” regulation, influencing numerous aspects of RNA
fate, including stability, processing, localization and translatability. Furthermore, enzymes that remove RNA
5′ end caps play critical roles in modulating these processes. Recently, a previously unknown form of RNA
5'-end capping has been identified in bacterial, yeast, and human cells. In this new form of RNA capping, the
metabolite nicotinamide adenine dinucleotide (NAD) is added at the RNA 5′ end. In contrast to 7-
methylguanylate (m7G) caps, which are added to mRNAs by a complex that associates with eukaryotic RNA
polymerase II (RNAP II), NAD caps are primarily added by RNAP itself in bacteria and eukaryotic nuclear and
mitochondrial transcripts. Thus, unlike m7G capping, which is observed in eukaryotes and certain eukaryotic
viruses, NAD capping is likely to occur in most, if not all, organisms. Our recently published work along with
our unpublished preliminary data, indicates that NAD capping targets mammalian RNAs for rapid decay. In
addition, we have shown eukaryotic cells possess several enzymes capable of removing NAD caps and,
furthermore, that the cellular functions of these “deNADding” enzymes are most evident during metabolic
stress. An overall theme emerging from our data is that addition and removal of NAD caps play critical roles
in mitochondrial function where NAD-capped mitochondrial-encoded transcripts and nuclear transcripts
encoding mitochondrial proteins are modulated by NAD caps. To decipher the interplay between cellular
assimilation of NAD and RNA metabolism we will define the functional role(s) of NAD caps and deNADding
enzymes in both budding yeast and mammalian cells. The first aim will investigate the hypothesis that NAD
capping of mitochondrial RNA plays a key role in maintaining NAD homeostasis with the NAD cap serving as
a reservoir to sequester and release free NAD for proper mitochondrial energetics. The second aim will
investigate the impact of NAD capping on nuclear encoded RNA and, in particular, explores the hypothesis
that NAD capping in budding yeast provides a mechanism for the targeted decay of RNAs in response to
nutrient stress. The third aim will determine how the NAD capping and deNADding of mammalian nuclear
mRNAs encoding mitochondrial proteins contributes to mitochondrial function upon cellular stress and
whether perturbation of the deNADding of these mRNAs contributes to mitochondrial dysfunction associated
with aging. The proposed studies will provide new insight in an emerging area of RNA biology, post-
transcriptional regulation in cellular metabolism and, furthermore, may provide a mechanistic framework for
developing new approaches to control gene expression in normal and disease states.
RNA5‘末端封端提供了一层“表位转录”调节,影响了RNA的许多方面
命运,包括稳定性、加工性、本土化和可译性。此外,去除RNA的酶
5‘端帽在调节这些过程中起着关键作用。最近,一种以前未知的RNA形式
已经在细菌、酵母和人类细胞中发现了5‘端封顶。在这种新的RNA封顶形式中,
代谢物烟酰胺腺嘌呤二核苷酸(NAD)加在RNA5‘端。相比之下,7-
甲基鸟粪酸(M7G)帽,由与真核RNA结合的复合体添加到mRNA上
聚合酶II(RNAP II),NAD帽主要由RNAP本身添加到细菌和真核细胞的核和
线粒体转录本。因此,与m7G封顶不同,m7G封顶在真核生物和某些真核生物中观察到
对于病毒,NAD封顶很可能发生在大多数(如果不是全部)生物体中。我们最近出版的作品以及
我们未发表的初步数据表明,NAD上限针对哺乳动物RNA的快速衰退。在……里面
此外,我们已经证明,真核细胞拥有几种能够去除NAD帽的酶,
此外,这些脱氧核糖核酸酶的细胞功能在新陈代谢过程中最为明显
压力。从我们的数据中得出的一个总体主题是,增加和取消NAD上限发挥着关键作用
在线粒体功能中,NAD封顶的线粒体编码转录本和核转录本
编码线粒体蛋白是由NAD帽调控的。破译细胞与细胞之间的相互作用
NAD和核糖核酸代谢的同化我们将确定NAD帽和deNADding的功能作用(S)
发芽酵母和哺乳动物细胞中的酶。第一个目标将调查NAD的假设
线粒体RNA的封顶在维持NAD动态平衡方面起着关键作用,NAD帽起着
为适当的线粒体能量学隔离和释放游离NAD的蓄水池。第二个目标是
研究NAD封顶对核编码RNA的影响,特别是探索假设
萌芽酵母中的NAD封顶为RNA的靶向衰退提供了一种机制,以响应
营养压力。第三个目标将决定哺乳动物核的NAD封顶和去NAD
编码线粒体蛋白的mRNAs有助于线粒体在细胞应激和
这些mRNAs脱氧核糖核酸脱氧核糖核酸的干扰是否与线粒体功能障碍有关
随着年龄的增长。拟议的研究将为RNA生物学的一个新兴领域提供新的见解,后
在细胞新陈代谢中的转录调节,此外,可能提供了一种机制框架
开发新的方法来控制正常和疾病状态下的基因表达。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MEGERDITCH KILEDJIAN其他文献
MEGERDITCH KILEDJIAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MEGERDITCH KILEDJIAN', 18)}}的其他基金
Eukaryotic RNA NAD capping and deNADding
真核 RNA NAD 加帽和 deNADding
- 批准号:
10443996 - 财政年份:2018
- 资助金额:
$ 36.51万 - 项目类别:
Eukaryotic RNA NAD capping and deNADding
真核 RNA NAD 加帽和 deNADding
- 批准号:
10797880 - 财政年份:2018
- 资助金额:
$ 36.51万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:














{{item.name}}会员




