Oxysterol Regulation of Microbial Pathogenesis
氧甾醇对微生物发病机制的调节
基本信息
- 批准号:10592354
- 负责人:
- 金额:$ 57.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:25-hydroxycholesterolAcuteAnimalsAnti-Bacterial AgentsB-LymphocytesBacteriaBacterial InfectionsBiochemicalBiochemistryBiological ProcessBiophysicsBiosensorCell membraneCell physiologyCell surfaceCellsChemicalsCholesterolCholesterol HomeostasisCirculationCommunicable DiseasesCultured CellsDevelopmentDistantDrug or chemical Tissue DistributionEndoplasmic ReticulumEpithelial CellsEpitheliumFatty LiverFunctional disorderGeneticGleanGoalsGut MucosaHeart DiseasesHomeostasisHumanHuman BiologyImmuneImmune systemImmunityImmunologicsInfectionInflammasomeInflammatoryInflammatory ResponseInnate Immune ResponseIntracellular MembranesLipidsListeriaListeria monocytogenesListeriosisMacrophageMammalian CellMammalsMediatingMembraneMembrane ProteinsMembrane Structure and FunctionMetabolic PathwayMolecularMolecular ProbesMonitorMovementMucosal Immune SystemMucous MembraneMusNatural ImmunityOrganismOutcomeParasitesPathogenesisPathogenicityPathway interactionsPenetrationPhysiologicalPlayProcessProductionPropertyProtocols documentationRegulationRegulatory PathwayResolutionRoleShigellaShigella flexneriSignal PathwaySiteSurfaceSurface TensionSystemTechnologyTestingTherapeutic InterventionTimeTissuesToxinViralVirusVisualizationWorkadaptive immune responsebiochemical toolscell growthcell motilitycell typecombatcytokineemerging pathogengut bacteriagut colonizationhuman pathogenin vivoinnovationinsightlipid metabolismlive cell imagingmicrobialmodel organismmouse modelnew technologynovel therapeuticspathogenpathogenic bacteriapathogenic microbepharmacologicpreventresponsesmall moleculetransmission process
项目摘要
Project Summary
The proposed project focuses on our recent discovery that immunological production of the oxysterol 25-
Hydroxycholesterol (25HC) potently inhibits the cellular dissemination of two globally important bacterial
pathogens, Listeria monocytogenes and Shigella flexneri. The anti-bacterial activity of 25HC is mediated
through mobilization of the accessible cholesterol pool from the plasma membrane (PM). Accessible
cholesterol is one of three pools into which PM cholesterol is sub-divided and this pool regulates cellular
signaling pathways that control lipid homeostasis and cell growth. By first characterizing the molecular
mechanism by which 25HC induces internalization of accessible cholesterol (Aim 1), these studies will reveal
how cholesterol can be rapidly transported in response to cytokine stimulation. Second, we will determine how
remodeling of PM cholesterol suppresses Listeria and Shigella from penetrating the cell-to-cell contact
junctions of the mucosal epithelium (Aim 2). This work will reveal how mammals enhance the barrier function
of mucosal surfaces through cholesterol metabolic pathways and will identify points of weakness in the
mucosal immune system that may be exploited by numerous microbial pathogens. Third, we will develop new
technologies for monitoring cholesterol dynamics in the living organism and use these technologies to
determine the tissues and cell types that mobilize accessible cholesterol in response to bacterial infection (Aim
3). Finally, the physiological significance of oxysterol-mediated immune pathways will be investigated in
mammalian model organisms using three complementary mouse models that disrupt 25HC activation,
production, and downstream activity (Aim 4). Insights gleaned from these studies, which range from basic
biochemistry to mouse models of infection, will explain how the human immune system has adapted
fundamental aspects of cholesterol metabolism to protect barrier cells from intracellular bacterial infection.
Developing new drugs that mimic the molecular activity of 25HC as determined in this proposal would be an
innovative approach to combat human infectious disease associated with pathogens that exploit host
cholesterol metabolism. These studies will also provide new insights into the pathogenic mechanisms of an
important infectious disease-causing agent and also into the biology of the human inflammatory response.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neal Mathew Alto其他文献
<em>Shigella</em> Puts the Brakes on the Host Cell Cycle
- DOI:
10.1016/j.chom.2007.08.003 - 发表时间:
2007-09-13 - 期刊:
- 影响因子:
- 作者:
Neal Mathew Alto - 通讯作者:
Neal Mathew Alto
Neal Mathew Alto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neal Mathew Alto', 18)}}的其他基金
Oxysterol Regulation of Microbial Pathogenesis
氧甾醇对微生物发病机制的调节
- 批准号:
10381602 - 财政年份:2021
- 资助金额:
$ 57.36万 - 项目类别:
Oxysterol Regulation of Microbial Pathogenesis
氧甾醇对微生物发病机制的调节
- 批准号:
10178988 - 财政年份:2021
- 资助金额:
$ 57.36万 - 项目类别:
Resolution of Inflammation by the SIX-family Transcription Factors
通过六家族转录因子解决炎症
- 批准号:
10328259 - 财政年份:2020
- 资助金额:
$ 57.36万 - 项目类别:
Resolution of Inflammation by the SIX-family Transcription Factors
通过六家族转录因子解决炎症
- 批准号:
10112827 - 财政年份:2020
- 资助金额:
$ 57.36万 - 项目类别:
Resolution of Inflammation by the SIX-family Transcription Factors
通过六家族转录因子解决炎症
- 批准号:
10553188 - 财政年份:2020
- 资助金额:
$ 57.36万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8235694 - 财政年份:2012
- 资助金额:
$ 57.36万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8788709 - 财政年份:2012
- 资助金额:
$ 57.36万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8415960 - 财政年份:2012
- 资助金额:
$ 57.36万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8603244 - 财政年份:2012
- 资助金额:
$ 57.36万 - 项目类别:
Type III effector regulation of host GTPase signaling
宿主 GTPase 信号转导的 III 型效应器调节
- 批准号:
8503581 - 财政年份:2009
- 资助金额:
$ 57.36万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 57.36万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 57.36万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 57.36万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 57.36万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 57.36万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 57.36万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 57.36万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 57.36万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 57.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 57.36万 - 项目类别:
Standard Grant