Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
基本信息
- 批准号:8415960
- 负责人:
- 金额:$ 29.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureBacteriaBacterial InfectionsBacterial ModelBacterial ToxinsBacterial TypingBindingBiochemicalBiological AssayCell PolarityCell modelCellsCommunicable DiseasesCommunicationComplexCouplingCrystallizationDataDevelopmentDisease ProgressionDrug TargetingEmerging Communicable DiseasesEnzymesEscherichia coliEscherichia coli EHECEventFamilyGleanGolgi ApparatusGuanosine Triphosphate PhosphohydrolasesHomologous GeneHumanImmune responseIn VitroInfectionInfectious Diseases ResearchKnowledgeLeadLiposomesMembraneMembrane Protein TrafficMethodsModelingMolecularMolecular StructureMultienzyme ComplexesNaturePathway interactionsPeptidesPhosphotransferasesPropertyProteinsRegulationRoentgen RaysSeriesShigellaSignal PathwaySignal TransductionSignal Transduction PathwaySpecificityStructureSurfaceSystemTestingVirulenceVirulence FactorsX-Ray Crystallographyantimicrobialbasecombatdesignenzyme structureimprovedinhibitor/antagonistinnovationinsightmembermimeticsnovelpathogenreconstitutionscaffoldsmall moleculetheoriestooltrafficking
项目摘要
DESCRIPTION (provided by applicant): Bacterial type III "effector" proteins are the primary virulence factors that guide the progression of numerous Gram-negative bacterial infectious diseases. Recent studies have estimated that a single pathogen delivers 10-50 unique effector proteins directly into host cells. Collectively, these virulence factors hijack host innate immune response and facilitate bacterial replication, dissemination, and disease progression. Therefore, determining how bacterial effector proteins control host intracellular communication pathways at the structural, biochemical, and biophysical level is an ongoing challenge in infectious disease research. This proposal seeks to reveal a structural and functional understanding of these host-pathogen relationships. Prior to this proposal, we identified a class of Enterohaemorhagic E. coli effector proteins that directly regulates host membrane trafficking GTPases and a cell polarity kinases through unique structural interactions. Using these structures as a guide, we will determine the molecular mechanism for bacterial regulation of human signaling enzymes. This includes determining how bacteria hijack host cargo trafficking pathways by directly regulating ARF GTPase activity on a membrane surface (Aim 1). We will also examine a novel PAK kinase activation mechanism through a series of X-ray crystallography, small molecule inhibitor studies, and enzymatic assays (Aim 2). The resulting structure-based theories will be used to directly compare the actions of numerous bacterial type III effector homologs to assemble host enzymes into new signaling circuits on the surface of bacterial effector scaffolds (Aim 3). Developing new drugs that target bacterial effector - host enzyme complexes would be an innovative approach to combat emerging infectious disease. While this idea holds great potential, the paucity of mechanistic information gleaned from virulence factor structures has so far hampered their development as suitable drug targets. As a means to this end, these studies will allow us to predict new mechanisms of action for understudied bacterial effector proteins, and provide a glimpse into the structural-based evolutionary progression of a related pathogen group.
描述(由申请人提供):细菌III型“效应”蛋白是指导许多革兰氏阴性细菌感染性疾病进展的主要毒力因子。最近的研究估计,单个病原体将10-50种独特的效应蛋白直接递送到宿主细胞中。总的来说,这些毒力因子劫持宿主先天免疫应答并促进细菌复制、传播和疾病进展。因此,确定细菌效应蛋白如何在结构、生物化学和生物物理水平上控制宿主细胞内通讯途径是传染病研究中的一个持续挑战。该建议旨在揭示这些宿主-病原体关系的结构和功能理解。在此之前的建议,我们确定了一类肠出血性大肠杆菌。大肠杆菌效应蛋白,通过独特的结构相互作用直接调节宿主膜运输GTP酶和细胞极性激酶。使用这些结构作为指导,我们将确定细菌调节人类信号酶的分子机制。这包括确定细菌如何通过直接调节膜表面上的ARF GT酶活性来劫持宿主货物运输途径(目的1)。我们还将通过一系列X射线晶体学、小分子抑制剂研究和酶测定来研究一种新的PAK激酶激活机制(目的2)。由此产生的基于结构的理论将用于直接比较许多细菌III型效应物同源物的作用,以将宿主酶组装成细菌效应物支架表面上的新信号传导回路(目的3)。开发针对细菌效应器-宿主酶复合物的新药将是对抗新兴传染病的创新方法。虽然这一想法具有巨大的潜力,但迄今为止,从毒力因子结构中收集到的机制信息的缺乏阻碍了它们作为合适的药物靶点的发展。作为实现这一目标的一种手段,这些研究将使我们能够预测未充分研究的细菌效应蛋白的新作用机制,并为相关病原体组的基于结构的进化进程提供一瞥。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neal Mathew Alto其他文献
<em>Shigella</em> Puts the Brakes on the Host Cell Cycle
- DOI:
10.1016/j.chom.2007.08.003 - 发表时间:
2007-09-13 - 期刊:
- 影响因子:
- 作者:
Neal Mathew Alto - 通讯作者:
Neal Mathew Alto
Neal Mathew Alto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neal Mathew Alto', 18)}}的其他基金
Oxysterol Regulation of Microbial Pathogenesis
氧甾醇对微生物发病机制的调节
- 批准号:
10381602 - 财政年份:2021
- 资助金额:
$ 29.15万 - 项目类别:
Oxysterol Regulation of Microbial Pathogenesis
氧甾醇对微生物发病机制的调节
- 批准号:
10592354 - 财政年份:2021
- 资助金额:
$ 29.15万 - 项目类别:
Oxysterol Regulation of Microbial Pathogenesis
氧甾醇对微生物发病机制的调节
- 批准号:
10178988 - 财政年份:2021
- 资助金额:
$ 29.15万 - 项目类别:
Resolution of Inflammation by the SIX-family Transcription Factors
通过六家族转录因子解决炎症
- 批准号:
10328259 - 财政年份:2020
- 资助金额:
$ 29.15万 - 项目类别:
Resolution of Inflammation by the SIX-family Transcription Factors
通过六家族转录因子解决炎症
- 批准号:
10112827 - 财政年份:2020
- 资助金额:
$ 29.15万 - 项目类别:
Resolution of Inflammation by the SIX-family Transcription Factors
通过六家族转录因子解决炎症
- 批准号:
10553188 - 财政年份:2020
- 资助金额:
$ 29.15万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8235694 - 财政年份:2012
- 资助金额:
$ 29.15万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8788709 - 财政年份:2012
- 资助金额:
$ 29.15万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8603244 - 财政年份:2012
- 资助金额:
$ 29.15万 - 项目类别:
Type III effector regulation of host GTPase signaling
宿主 GTPase 信号转导的 III 型效应器调节
- 批准号:
8503581 - 财政年份:2009
- 资助金额:
$ 29.15万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Standard Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 29.15万 - 项目类别:
Continuing Grant