GigaFIBI; rapid, large-format histology-resolution imaging for Intraoperative assessment of breast lumpectomy margins

千兆FIBI;

基本信息

  • 批准号:
    10568823
  • 负责人:
  • 金额:
    $ 64.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Breast-conserving surgery (BCS), or lumpectomy, has become standard for the treatment of breast cancers. The goal of BCS is to remove the cancer and enough surrounding tissue to reduce the chance of tumor recurrence (clear margins) but retain as much of the normal breast appearance as possible. Although BCS has many advantages, residual tumor (positive margins) are found on post-operative pathology in 5–40% of cases, often necessitating an additional surgery and potential for treatment delays, increased healthcare costs, patient anxiety, and suboptimal cosmetic outcomes. Obtaining clear margins at the time of the initial breast surgery also has implications for malignancy, as margin status is the chief determinant of local recurrence. Therefore, technologies providing intraoperative margin assessment, in which real-time surgical guidance is most often coordinated with the pathology team, has the potential to substantially reduce the need for additional surgeries, improve patient outcomes, and increase health care value. Various methods have been proposed and evaluated for intraoperative breast margin assessment, including gross evaluation, frozen section analysis, optical and non-optical imaging, and others. While each of these techniques are suggested to reduce positive margin rates over non-guided surgeries, they also have inherent limitations (e.g. processing time, cost, permanent tissue changes), with varying degrees of sensitivity and specificity. Accordingly, a single intraoperative method has yet to be widely accepted into clinical practice and post-operative pathology remains the gold-standard for diagnosis and margin evaluation. The ideal tool for intraoperative BCS assessments would have a high degree of sensitivity to detect all tumor in the margins, regardless of tumor type, and, since diagnosis is not the intended outcome, specificity should be high enough to both limit false positives and the rate of return surgeries. To this end, we propose FIBI (Fluorescence Imitating Brightfield Imaging) for rapid, high-quality imaging of BCS tissues. We will use our already existing FIBI technology to engineer a novel system, Giga FIBI, capable of assessing large areas (up to 100 x 100 mm2) of fresh tissue, eliminating the need for substantial processing or sectioning. Through a series of validation studies, we will show that Giga FIBI generates microscopic images at a quality comparable to gold-standard histology from large surfaces within just minutes. Unlike other existing methodologies for imaging tissue directly without sectioning (slide-free techniques), Giga FIBI is a technically simple and cost- effective solution that is non-destructive, preserves orientation, and leaves the tissue available for downstream permanent histology or molecular tests. The practical guidance provided by Giga FIBI is expected to markedly enhance intraoperative breast tumor margin assessment to minimize repeat surgeries, local recurrence, and improve patient outcomes.
项目摘要 保乳手术(BCS),或乳房肿瘤切除术,已成为治疗乳腺癌的标准。 BCS的目标是切除癌症和足够的周围组织,以减少肿瘤的机会 复发(边缘清晰),但尽可能保留正常乳房外观。虽然BCS 许多优点,在5-40%的病例中,在术后病理学上发现了残留肿瘤(阳性边缘), 这通常需要额外的手术,并可能导致治疗延迟、医疗费用增加、患者 焦虑和不理想的美容效果。在初次乳房手术时获得清晰的边缘 也暗示恶性肿瘤,因为切缘状态是局部复发的主要决定因素。因此,我们认为, 提供术中切缘评估的技术,其中最常见的是实时手术指导 与病理团队协调,有可能大大减少额外手术的需要, 改善患者的治疗效果,提高医疗保健价值。 已经提出并评价了各种方法用于术中乳腺切缘评估,包括 大体评估、冷冻切片分析、光学和非光学成像等。尽管每个 技术建议,以减少积极的边缘率超过非引导手术,他们也有固有的 局限性(例如处理时间、成本、永久性组织变化),具有不同程度的敏感性, 的特异性因此,单一的术中方法尚未被临床实践广泛接受, 术后病理仍然是诊断和边缘评估的金标准。 术中BCS评估的理想工具将具有高度的灵敏度,以检测所有 边缘肿瘤,无论肿瘤类型如何,由于诊断不是预期结果,特异性 应该足够高,以限制假阳性和返回手术率。为此,我们建议 用于BCS组织的快速、高质量成像的FIB(荧光仿射场成像)。我们将用我们 已经存在的FIB技术,设计一个新的系统,千兆FIB,能够评估大面积(上 至100 × 100 mm 2)的新鲜组织,从而消除了对大量处理或切片的需要。通过 一系列的验证研究,我们将表明,千兆FIB生成的显微图像的质量相当 几分钟内就能从大面积组织学上达到黄金标准。与其他现有方法不同, 直接成像组织而不切片(无载玻片技术),Giga FIB是一种技术简单、成本低的方法, 有效的解决方案,是非破坏性的,保持方向,并留下组织可用于下游 永久性组织学或分子测试。 Giga FIB提供的实用指导有望显着提高术中乳腺肿瘤 边缘评估,以尽量减少重复手术,局部复发和改善患者的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farzad Fereidouni其他文献

Farzad Fereidouni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farzad Fereidouni', 18)}}的其他基金

Rapid quantitative renal fibrosis evaluation with dual-mode microscopy
使用双模式显微镜快速定量评估肾纤维化
  • 批准号:
    10345257
  • 财政年份:
    2022
  • 资助金额:
    $ 64.65万
  • 项目类别:
Rapid quantitative renal fibrosis evaluation with dual-mode microscopy
使用双模式显微镜快速定量评估肾纤维化
  • 批准号:
    10543527
  • 财政年份:
    2022
  • 资助金额:
    $ 64.65万
  • 项目类别:
DUET: Rapid dual-mode microscopy for quantitative slide-based renal fibrosis evaluation
DUET:快速双模式显微镜用于基于载玻片的肾纤维化定量评估
  • 批准号:
    10261643
  • 财政年份:
    2020
  • 资助金额:
    $ 64.65万
  • 项目类别:

相似海外基金

Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
  • 批准号:
    MR/X034690/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.65万
  • 项目类别:
    Fellowship
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
  • 批准号:
    10098274
  • 财政年份:
    2024
  • 资助金额:
    $ 64.65万
  • 项目类别:
    Collaborative R&D
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
  • 财政年份:
    2024
  • 资助金额:
    $ 64.65万
  • 项目类别:
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
  • 批准号:
    2902083
  • 财政年份:
    2024
  • 资助金额:
    $ 64.65万
  • 项目类别:
    Studentship
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
  • 批准号:
    10109165
  • 财政年份:
    2024
  • 资助金额:
    $ 64.65万
  • 项目类别:
    Launchpad
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
  • 批准号:
    MR/Z503599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.65万
  • 项目类别:
    Research Grant
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
  • 批准号:
    MR/Y009460/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.65万
  • 项目类别:
    Fellowship
How parents manage climate anxiety: coping and hoping for the whole family
父母如何应对气候焦虑:全家人的应对和希望
  • 批准号:
    DP230101928
  • 财政年份:
    2024
  • 资助金额:
    $ 64.65万
  • 项目类别:
    Discovery Projects
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
  • 批准号:
    10097862
  • 财政年份:
    2024
  • 资助金额:
    $ 64.65万
  • 项目类别:
    Collaborative R&D
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
  • 批准号:
    480808
  • 财政年份:
    2023
  • 资助金额:
    $ 64.65万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了