Microfabricated all-diamond microelectrode arrays for neurotransmitter sensing and extracellular recording

用于神经递质传感和细胞外记录的微加工全金刚石微电极阵列

基本信息

  • 批准号:
    10563205
  • 负责人:
  • 金额:
    $ 57.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Complete understanding of brain function requires reliable and comprehensive mapping of large-scale brain networks with high spatiotemporal resolution and minimum invasiveness. Tools to achieve such mapping must overcome a myriad of challenges that are not adequately or simultaneously addressed by any existing technology. Hence the overall goal of this proposal is to develop a new diamond-based neural interface system that consists of up to 256 recording sites in mm3-sized volumes for combined electrical and chemical detection of neuronal activity in living nerve tissues. The proposed innovative tool will have the following significant advantages over existing technologies. First, highly-conductive BDD electrodes will simultaneously enhance the sensitivity, selectivity, and stability of neurological sensing. They will also have a greater potential range of operation than current electrode materials. Second, by using undoped PCD as a hermetic, biocompatible, and low-fouling encapsulation material, the new device will potentially have greater longevity and long-term stability for chronic applications. Third, a compact, dual-mode headstage will better enable the control of electrophysiology and fast-scan cyclic voltammetric (FSCV) measurements with high precision and a strong signal-to-noise ratio, while minimizing crosstalk. Fourth, the novel micromachining technique will permit wafer-level, mass production of diamond electrodes with various geometries, fine spatial resolution (submicrometer to micrometer scale), and high yields (>90%). Adopted from well-established semiconductor manufacturing techniques, the proposed fabrication approach is more reliable, consistent, scalable, and labor/cost-efficient than the hand assembly approach that is widely used today for making carbon fiber electrodes. Last but not least, 3D arrays of highly packed electrodes will significantly enhance the lateral and depth coverage of the new electrochemical detection tools compared to current chemical sensing tools. The project will be conducted by a multidisciplinary, collaborative team of researchers. The team will leverage their extensive experience in developing diamond fiber electrodes and in refining material synthesis and device fabrication techniques to push the spatial resolution of diamond electrodes from several tens of microns to submicrometer (via electron-beam lithography) and to micrometer (via ultraviolet lithography) (Aim 1). In parallel with electrode development, the team will engineer solutions to implement miniaturized head-mounted electrophysiology and FSCV electronics, and integrate the headstage with diamond electrode arrays to achieve a complete system (Aim 2). The functionality, biocompatibility, and stability of the integrated system will then be assessed ex vivo and in vivo using complementary analysis techniques (Aim 3). The proposed work is significant because it will yield a revolutionary neural interface tool that can be readily disseminated to other researchers for use in neuroscience and clinical studies to reveal the mechanisms underlying many brain disorders and diseases.
项目摘要 对大脑功能的完整理解需要可靠和全面的大规模大脑绘图 具有高时空分辨率和最小侵入性的网络。实现这种映射的工具必须 克服现有技术无法充分或同时解决的无数挑战 技术.因此,本提案的总体目标是开发一种新的基于金刚石的神经接口系统 它由多达256个记录点组成,体积为mm 3, 在活的神经组织中检测神经元活动。拟议的创新工具将具有以下特点 与现有技术相比,具有显著优势。首先,高导电BDD电极将同时 增强神经感测的灵敏度、选择性和稳定性。他们也将有更大的潜力 比目前的电极材料的操作范围。第二,通过使用未掺杂的PCD作为密封材料, 生物相容性和低污染的封装材料,新设备将有可能具有更长的寿命, 长期稳定的长期应用。第三,紧凑的双模云台将更好地实现 控制电生理学和快速扫描循环伏安法(FSCV)测量,具有高精度和 高信噪比,同时最大限度地减少串扰。第四,新的微加工技术将 允许晶片级大规模生产具有各种几何形状、精细空间分辨率 (亚微米至微米级)和高产率(>90%)。采用成熟的半导体 制造技术,所提出的制造方法更可靠,一致,可扩展, 与目前广泛用于制造碳纤维电极的手工组装方法相比,该方法具有更高的劳动力/成本效率。 最后但并非最不重要的是,高度填充的电极的3D阵列将显著增强横向和深度 新的电化学检测工具的覆盖范围与当前的化学传感工具相比。项目 将由一个多学科的合作研究小组进行。该团队将利用其广泛的 具有金刚石纤维电极开发、材料合成和器件制造的经验 将金刚石电极的空间分辨率从几十微米提高到亚微米的技术 (via电子束光刻)和微米(通过紫外光刻)(目标1)。与电极并联 该团队将设计解决方案,以实现小型化头戴式电生理学, FSCV电子学,并将头台与金刚石电极阵列集成,以实现完整的系统 (Aim 2)的情况。然后将离体评估集成系统的功能性、生物相容性和稳定性 和在体内使用互补分析技术(目的3)。拟议的工作意义重大,因为它将 产生一个革命性的神经接口工具,可以很容易地传播给其他研究人员使用, 神经科学和临床研究,以揭示许多大脑紊乱和疾病的潜在机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wen Li其他文献

Wen Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wen Li', 18)}}的其他基金

Placental barrier culture to delineate the mechanism of hepatitis E virus infection at the maternal and fetal interface
胎盘屏障培养描绘母体和胎儿界面戊型肝炎病毒感染的机制
  • 批准号:
    10716971
  • 财政年份:
    2023
  • 资助金额:
    $ 57.67万
  • 项目类别:
A Neurosensory Account of Posttraumatic Stress Disorder
创伤后应激障碍的神经感觉学解释
  • 批准号:
    10607183
  • 财政年份:
    2023
  • 资助金额:
    $ 57.67万
  • 项目类别:
Deficient inhibition underlies salience network hyperactivity in stress and anxiety
抑制不足是压力和焦虑中显着网络过度活跃的基础
  • 批准号:
    10377665
  • 财政年份:
    2022
  • 资助金额:
    $ 57.67万
  • 项目类别:
Deficient inhibition underlies salience network hyperactivity in stress and anxiety
抑制不足是压力和焦虑中显着网络过度活跃的基础
  • 批准号:
    10559649
  • 财政年份:
    2022
  • 资助金额:
    $ 57.67万
  • 项目类别:
Microfabricated all-diamond microelectrode arrays for neurotransmitter sensing and extracellular recording
用于神经递质传感和细胞外记录的微加工全金刚石微电极阵列
  • 批准号:
    10337137
  • 财政年份:
    2020
  • 资助金额:
    $ 57.67万
  • 项目类别:
Strategy for combining circulating tumor DNA (ctDNA) and magnetic resonance imaging (MRI) measures of tumor burden for prediction of response and outcome in neoadjuvant-treated early breast cancer
结合循环肿瘤 DNA (ctDNA) 和肿瘤负荷磁共振成像 (MRI) 测量来预测新辅助治疗的早期乳腺癌的反应和结果的策略
  • 批准号:
    10311505
  • 财政年份:
    2020
  • 资助金额:
    $ 57.67万
  • 项目类别:
Strategy for combining circulating tumor DNA (ctDNA) and magnetic resonance imaging (MRI) measures of tumor burden for prediction of response and outcome in neoadjuvant-treated early breast cancer
结合循环肿瘤 DNA (ctDNA) 和肿瘤负荷磁共振成像 (MRI) 测量来预测新辅助治疗的早期乳腺癌的反应和结果的策略
  • 批准号:
    10523117
  • 财政年份:
    2020
  • 资助金额:
    $ 57.67万
  • 项目类别:
Enhancing CNS Drug Delivery By Manipulating The Blood-Brain Barrier
通过操纵血脑屏障增强中枢神经系统药物输送
  • 批准号:
    8384079
  • 财政年份:
    2012
  • 资助金额:
    $ 57.67万
  • 项目类别:
Sensory Perception of Threat in Anxiety
焦虑中对威胁的感官知觉
  • 批准号:
    8293586
  • 财政年份:
    2012
  • 资助金额:
    $ 57.67万
  • 项目类别:
Sensory Perception of Threat in Anxiety
焦虑中对威胁的感官知觉
  • 批准号:
    8608006
  • 财政年份:
    2012
  • 资助金额:
    $ 57.67万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.67万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了