Interventional Oncology

介入肿瘤学

基本信息

  • 批准号:
    10920176
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The Center for lnterventional Oncology (CIO) was established at the NIH Clinical Center (CC) to develop and translate image-guided multi modality multidisciplinary technologies for localized cancer treatments. The Center is a collaboration involving CC and NCI. The Center draws on the strengths of each partner to investigate how imaging technologies and devices can diagnose and treat localized cancers in ways that are precisely targeted and minimally or non-invasive. In doing so, CIO bridges the gap between diagnosis and therapy, and between emerging technologies and procedural medicine. Advanced imaging methods detect cancers earlier when often localized to a single organ or region, such as the liver or prostate. lnterventional oncology often provides cancer patients with local or regional treatment options to augment the standard systemic or organ-based cancer therapies. CIO investigators leverage the interdisciplinary, translational environment at the CC to investigate and optimize how and when to combine drugs, devices, and multimodal imaging navigation. For example, "activatable" drugs can be injected in a vessel inside a nanoscale or micron-scale vector or bubble, then deployed directly in the tumor with needles, catheters, or ultrasound using "fusion imaging", "augmented reality", or AI-"deep learning", to enable the physician to navigate through the body in a more standardized fashion, with real-time visualization using advanced imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), cone beam CT (CBCT), or ultrasound. Pre procedural images are fused to guide devices delivering targeted therapy to the location of the disease, making the procedure more cost effective because it doesn't require the imaging system to be physically present to take advantage of the prior imaging information. A prior prostate MRI, for example, can be used to help with guided biopsy or focal ablation in an office setting, by using a "medical GPS"-enabled ultrasound, without requiring, occupying or tying up an MRI system during the procedure. In another example, a thin needle or light, sound, or electrical waves can be used to ablate tumors and enhance targeted drug delivery or immunomodulate by enhanced antigen presentation or downregulation of immunosuppressive factors. Energy sources include high-intensity focused ultrasound, freezing, microwaves, laser, histotripsy, electroporation, and radiofrequency. Investigations look into image-guided drug delivery or image guided "drug painting," where the image can be used to prescribe a particular drug to a specific region, by combining targeted, image-able able or activate-able drugs with localized energy or heat to deploy the drug within specially engineered micro- or nano-particles. The Center provides a forum to encourage collaborations among researchers and patient-care experts in medical, surgical, urologic, and radiation oncology and interventional radiology / molecular interventions. The IRP provides an exceptional environment for this type of collaborative translational research. Other major program components include the development of new image-guided biopsy for personalized drug discovery) and first-in-human investigations involving new micro- or nano-scale drugs and carriers, devices, image-guided robotics or augmented reality devices for enhanced automation and standardization of procedures. Targeted sequential biopsy is a powerful tool for drug discovery or biomarker characterization across time and space coordinates. Education and cross-training is another important part of the program. Significant gaps exist between the various disciplines, between research efforts and patient care, and between diagnosis and treatment. The gaps may be integrated through advanced image methods for localized therapy. CIO trainees are exposed to a wide variety of interdisciplinary thought, which underlines the unique translational atmosphere at the NIH, where bench-to-bedside is the rule. Specific aims include: 1. Develop training and educational pathways not otherwise available in Interventional Oncology 2. Develop novel image-guided methods for smart biopsy and biomarker procurement to support targeted therapeutics 3. Support patient care using novel minimally invasive Interventional Oncology techniques, especially in the liver, kidney and prostate 4. Develop novel techniques and technologies in Interventional Oncology. This program uniquely provides an interdisciplinary environment that combines training, patient care, and translational research to accelerate progress in interventional oncology and molecular-targeted interventions. The focus is upon translational models, translational tools, practical deliverables and multidisciplinary paradigms that address unmet clinical needs. Artificial intelligence / deep learning in cancer were begun to define pathways and toolkits to promote integration of digital pathology, with molecular and imaging information for specific cancers and interventions. CIO manages - 10 preclinical protocols and - 5 clinical protocols. CIO staff were awarded advanced degrees and staff have mentored over 200 trainees (students, residents, fellows, PhD candidates, junior faculty, visiting scientists, engineers, and collaborating scientists). The Woodchuck HCC model was established and characterized for IR and immunomodulatory agents. Different ablation energies were compared in terms of immune effects and immune resistance. Novel software and hardware were developed for patients. Augmented reality for smartphones and goggles was compared to standard guidance systems for IR clinic, and was used for ablation treatment planning. CIO helped define the founding vision of the NCI Al Resource, as a toolkit for deep learning tasks within CCR and the data science ecosystem for cancer. Fusion guided ablation was developed and deployed for the office setting, as was rectum-free prostate biopsy with needle and ultrasound totally outside of the rectum. Smartphone interventions were brought to clinic. CIO accomplished the 1st in human use of artificial intelligence and deep learning for semi-automated segmentation and registration during thermal ablation procedures, Transperineal hand-held ultrasound fusion biopsy without a frame or stepper stage was tested in practice. In the translational animal lab, CIO characterized molecular immune correlates for woodchuck hepatitis-induced HCC, developed a drug delivery model for drug dose painting with fusion and image-able drug eluting beads, developed and deployed immuno-beads that elute immunomodulatory agents (TLR-7 and small molecule checkpoint inhibitors) after local catheter-based delivery into woodchucks with HCC, characterized preclinical augmentation of check point inhibition with cryo in woodchuck liver cancer and cryo and RFA in mouse tumors in vivo. Multiple devices were developed including "Angle-Nav" MEMS clip to needle, Airwaze, BronchoMEMS, OncoNav, PercuNav, UroNav, Lumi and CystoNav image stitching. Augmented reality via smartphone was validated. The CIO team also continued to harvest from the multi-national partnerships with > 15 publications on COVID-19, the largest public posting of COVID-19 CTs in the 1st year, and helped translate and commercialize a 3D-printed miniature ventilator and an isolation device for mass casualty and in-field transport purposes. A deep learning model was trained for detection of illness like Omicron with voice signal alone, and a voice App was deployed on smartphones for disease detection. Bladder cancer clinical trials are planned studying heat-deployed liposomal chemotherapy and hot saline infusions. HIFU clinical trials are starting for prostate cancer. Artificial intelligence tools for image guided therapy were deployed.
美国国立卫生研究院临床中心(CC)成立了介入肿瘤学中心(CIO),以开发和转化用于局部癌症治疗的图像引导多模态多学科技术。该中心是CC和NCI的合作项目。该中心利用每个合作伙伴的优势,研究成像技术和设备如何以精确靶向和微创或非侵入性的方式诊断和治疗局部癌症。在这样做的过程中,CIO在诊断和治疗之间,以及新兴技术和程序性医学之间架起了桥梁。先进的成像方法可以在癌症通常局限于单个器官或区域(如肝脏或前列腺)时更早地检测到癌症。介入肿瘤学通常为癌症患者提供局部或区域治疗选择,以增加标准的全身或器官癌症治疗。CIO调查员利用CC的跨学科、转化环境来调查和优化如何以及何时结合药物、设备和多模态成像导航。例如,“可激活”药物可以注射到纳米级或微米级矢量或气泡内的血管中,然后使用针、导管或使用“融合成像”、“增强现实”或人工智能“深度学习”的超声波直接部署在肿瘤中,使医生能够以更标准化的方式在体内导航,并使用先进的成像技术实时可视化,如磁共振成像(MRI)、正电子发射断层扫描(PET)、计算机断层扫描(CT),锥形束CT (CBCT),或超声波。手术前的图像被融合在一起,引导设备将靶向治疗传递到疾病的位置,使手术更具成本效益,因为它不需要成像系统实际存在,以利用先前的成像信息。例如,通过使用“医疗GPS”功能的超声波,先前的前列腺MRI可用于在办公室环境中帮助引导活检或局灶消融,而无需在手术过程中占用或占用MRI系统。在另一个例子中,细针或光、声或电波可用于消融肿瘤并通过增强抗原呈递或下调免疫抑制因子来增强靶向药物递送或免疫调节。能量来源包括高强度聚焦超声、冷冻、微波、激光、组织切片、电穿孔和射频。研究着眼于图像引导药物输送或图像引导“药物绘画”,其中图像可用于将特定区域的特定药物处方,通过将靶向,可成像或可激活的药物与局部能量或热量相结合,将药物部署在专门设计的微或纳米颗粒中。该中心提供了一个论坛,鼓励在医学、外科、泌尿外科、放射肿瘤学和介入放射学/分子干预方面的研究人员和患者护理专家之间的合作。IRP为这种类型的合作转化研究提供了一个特殊的环境。其他主要项目包括开发新的图像引导活检(用于个性化药物发现)和首次人体研究,涉及新的微或纳米级药物和载体、设备、图像引导机器人或增强现实设备,以增强程序的自动化和标准化。靶向序贯活检是跨越时间和空间坐标的药物发现或生物标志物表征的有力工具。教育和交叉培训是该计划的另一个重要部分。各个学科之间、研究工作与病人护理之间、诊断与治疗之间存在着显著的差距。这些间隙可以通过先进的图像方法进行局部治疗。首席信息官的受训者接触到各种各样的跨学科思想,这突显了NIH独特的转化氛围,这里从实验室到病床是规则。具体目标包括:1。开发介入肿瘤学中没有的培训和教育途径2。开发新的图像引导方法,用于智能活检和生物标志物采购,以支持靶向治疗。使用新型微创介入肿瘤学技术支持患者护理,特别是在肝脏、肾脏和前列腺方面。开发介入肿瘤学的新技术。该项目独特地提供了一个跨学科的环境,结合了培训,患者护理和转化研究,以加速介入肿瘤学和分子靶向干预的进展。重点是翻译模型、翻译工具、实际交付成果和多学科范式,以解决未满足的临床需求。癌症领域的人工智能/深度学习开始定义途径和工具包,以促进数字病理学与特定癌症和干预措施的分子和成像信息的整合。CIO管理10个临床前协议和5个临床协议。CIO员工被授予高级学位,并指导了200多名学员(学生、住院医师、研究员、博士候选人、初级教师、访问科学家、工程师和合作科学家)。建立土拨鼠肝细胞癌模型,并用IR和免疫调节剂进行表征。比较不同消融能量对免疫效果和免疫阻力的影响。为患者开发了新颖的软件和硬件。将智能手机和护目镜的增强现实与IR临床的标准引导系统进行比较,并用于消融治疗计划。CIO帮助定义了NCI人工智能资源的创始愿景,作为CCR和癌症数据科学生态系统中深度学习任务的工具包。融合引导消融术被开发并应用于办公室环境,就像在直肠外用针和超声进行无直肠前列腺活检一样。智能手机干预被带到诊所。在热消融过程中,CIO首次在人类中使用人工智能和深度学习进行半自动分割和配准,在实践中测试了无框架或步进阶段的经会阴手持式超声融合活检。在转化动物实验室中,CIO表征了土拨鼠肝炎诱导的HCC的分子免疫相关因素,开发了一种药物递送模型,用融合和可成像的药物洗脱珠进行药物剂量涂绘,开发并部署了免疫珠,在局部导管给药后洗脱免疫调节剂(TLR-7和小分子检查点抑制剂)。在土拨鼠肝癌中低温检查点抑制的临床前增强,在小鼠肿瘤中低温和RFA的临床前增强。开发了多种器件,包括“Angle-Nav”MEMS夹针、Airwaze、BronchoMEMS、OncoNav、PercuNav、UroNav、Lumi和CystoNav图像拼接。通过智能手机增强现实得到验证。首席信息官团队还继续从多国伙伴关系中收获成果,出版了bbbb15篇关于COVID-19的出版物,这是第一年公开发布的COVID-19 ct,并帮助翻译和商业化3d打印微型呼吸机和用于大规模伤亡和现场运输的隔离装置。训练深度学习模型,仅用语音信号就能检测出像欧米克隆这样的疾病,并在智能手机上部署语音应用程序进行疾病检测。膀胱癌临床试验计划研究热部署脂质体化疗和热盐水输注。HIFU治疗前列腺癌的临床试验已经开始。部署了图像引导治疗的人工智能工具。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparison of MRI-Based Staging and Pathologic Staging for Predicting Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy.
基于 MRI 的分期和病理分期预测根治性前列腺切除术后前列腺癌生化复发的比较。
  • DOI:
    10.2214/ajr.23.29609
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Merriman,KatieM;Harmon,StephanieA;Belue,MasonJ;Yilmaz,EnisC;Blake,Zoë;Lay,NathanS;Phelps,TimE;Merino,MariaJ;Parnes,HowardL;Law,YanMee;Gurram,Sandeep;Wood,BradfordJ;Choyke,PeterL;Pinto,PeterA;Turkbey,Baris
  • 通讯作者:
    Turkbey,Baris
Is prostatic adenocarcinoma with cribriform architecture more difficult to detect on prostate MRI?
具有筛状结构的前列腺腺癌在前列腺 MRI 上更难检测吗?
  • DOI:
    10.1002/pros.24610
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Belue,MasonJ;Blake,Zoë;Yilmaz,EnisC;Lin,Yue;Harmon,StephanieA;Nemirovsky,DanielR;Enders,JacobJ;Kenigsberg,AlexanderP;Mendhiratta,Neil;Rothberg,Michael;Toubaji,Antoun;Merino,MariaJ;Gurram,Sandeep;Wood,BradfordJ;Choyke,P
  • 通讯作者:
    Choyke,P
Vaginal Pessary for Uterine Repositioning during High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas.
在高强度聚焦超声消融子宫肌瘤期间用于子宫重新定位的阴道子宫托。
  • DOI:
    10.1159/000441782
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    KlepacPulanic,Tajana;Venkatesan,AradhanaM;Segars,James;Sokka,Sham;Wood,BradfordJ;Stratton,Pamela
  • 通讯作者:
    Stratton,Pamela
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradford Wood其他文献

Bradford Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradford Wood', 18)}}的其他基金

Core Research Services for Molecular Imaging and Imaging Sciences
分子成像和成像科学的核心研究服务
  • 批准号:
    7733649
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10022065
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation Tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10691768
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10262633
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
  • 批准号:
    10262659
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
  • 批准号:
    10920175
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    8952855
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10691770
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Optical and electromagnetic tracking guidance for hepatic interventions
肝脏干预的光学和电磁跟踪指导
  • 批准号:
    10691780
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10022063
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了