Interventional Oncology

介入肿瘤学

基本信息

  • 批准号:
    10691770
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The Center for Interventional Oncology (CIO) was established at the NIH Clinical Center (CC) to develop and translate image-guided technologies for localized cancer treatments. The Center is a collaboration involving the CC and the National Cancer Institute (NCI), and to lesser extent NIBIB. The Center draws on the strengths of each partner to investigate how imaging technologies and devices can diagnose and treat localized cancers in ways that are precisely targeted and minimally or non-invasive. In doing so, CIO bridges the gap between diagnosis and therapy, and between emerging technologies and procedural medicine. Advanced imaging methods have ushered in an era of earlier detection of cancers that are frequently localized to a single organ or region, such as the liver or prostate. Interventional oncology often provides cancer patients with local or regional treatment options to augment the standard systemic or organ based cancer therapies. CIO investigators leverage the interdisciplinary, translational environment at the CC to investigate and optimize how and when to combine drugs, devices, and multimodal imaging navigation. For example, "activatable" drugs can be injected in a vein or artery inside a nanoscale or micron-scale vector or bubble, then deployed directly in the tumor with needles, catheters, or ultrasound using "fusion imaging", "augmented reality", or "deep learning", to enable the physician to navigate through the body in a more standardized fashion, with real-time visualization using the latest advanced imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), cone beam CT (CBCT), or ultrasound. Pre-procedural images are reused to guide devices delivering targeted therapy to the location of the disease, making the procedure more cost-effective because it doesn't require the imaging system to be physically present to take advantage of the prior imaging information. A prior prostate MRI, for example, can be used to help with guided biopsy or focal ablation by using a "medical GPS"-enabled needle and ultrasound, without requiring, occupying or tying up an MRI system during the procedure. In another example, a thin needle or light sound or electrical waves can be used to ablate tumors and enhance targeted drug delivery. Energy sources include high-intensity focused ultrasound, freezing, microwaves, laser, histotripsy, electroporation, and radiofrequency. Researchers also expand investigations into image-guided drug delivery or image-guided "drug painting," where the image can be used to prescribe a particular drug to a specific region, by combining targeted, image-able-able or activate-able drugs with localized energy or heat to deploy the drug within specially engineered micro- or nano-particles. The Center provides a forum to encourage collaborations among researchers and patient-care experts in medical, surgical, urologic, and radiation oncology and interventional radiology / molecular interventions.. The CC provides an exceptional environment for this type of collaborative translational research. Other major program components include the development of new image-guided methods for personalized drug investigations (or tracking tissue responses to investigational drugs during drug discovery) and first-in-human investigations involving new micro- or nano-scale drugs and carriers, devices, image-guided robotics or augmented reality devices for enhanced automation and standardization of procedures. Targeted sequential biopsy is a powerful tool for drug discover or biomarker characterization across time and space coordinates. Education and cross-training is another important part of the program. Significant gaps exist between the various disciplines, between research efforts and patient care, and between diagnosis and treatment. The gaps may be integrated through advanced image methods for localized therapy. CIO trainees are exposed to a wide variety of disciplinary thought, which underlines the unique translational atmosphere at the NIH, where bench-to-bedside is the rule. Specific aims include: 1. Develop training and educational pathways not otherwise available in Interventional Oncology 2. Develop novel image-guided methods for smart biopsy and biomarker procurement to support targeted therapeutics 3. Support patient care using novel minimally invasive Interventional Oncology techniques, especially in the liver, kidney and prostate 4. Pursue research in novel techniques and technologies in Interventional Oncology. This program is ideally and uniquely positioned to provide an interdisciplinary environment that combines training, patient care, and pre-clinical and in-vivo translational research to accelerate progress in interventional oncology and molecular targeted interventions. The focus is upon translational models, translational tools, and actual practical deliverables and multidisciplinary paradigms that meet specific translational milestones to address short term clinical needs. Deep learning in cancer was begun with the goal of defining pathways and toolkits to promote future integration of digital pathology, with molecular and imaging information for specific cancers and cancer interventions. CIO managed 10 preclinical protocols and 5 clinical protocols. The CIO has trained many students, residents, fellows, PhD candidates, junior faculty, visiting scientists, engineers, and collaborating scientists, who have successfully advanced in their academic careers and are practicing in interventional radiology, radiology, urology, radiation oncology, veterinary medicine, and various senior positions in academics and industry. The Woodchuck HCC model was established and characterized for IR and immunomodulatory agents. Heat vs freezing ablation was compared in terms of immune effects and immune resistance. Novel software and hardware were developed for patients. Augmented reality for smartphones was compared to standard guidance systems for composite ablation. CIO linked to the NCI AI Resource,for deep learning tasks within CCR and the data science ecosystem for cancer. Fusion guided ablation was developed and deployed for the office setting, as was prostate biopsy with needle and ultrasound totally outside of the rectum. Smartphone interventions were brought to clinic. CIO accomplished the 1st in human use of artificial intelligence and deep learning for semi-automated segmentation and registration during thermal ablation procedures, Transperineal hand-held ultrasound fusion biopsy without a frame or stepper stage was characterized in clinic, to enable accurate interventions for prostate cancer, without involving the rectum, in any way. In the translational animal lab, CIO characterized molecular immune correlates for woodchuck hepatitis-induced HCC, developed a drug delivery model for drug dose painting with fusion and image-able drug eluting beads, developed and deployed immuno-beads that elute immunomodulatory agents after local catheter-based delivery into woodchuck HCC, characterized preclinical augmentation of check point inhibition with cryo in woodchuck liver cancer and cryo and RFA in mouse tumors in vivo. Immunobubbles for US deployment were designed. Multiple bead chemistries and injectable gel formulations were refined. Multiple devices were developed including a video-based system for bronchoscopic tracking without robotics or EM hardware. Refinements for PercuNav and UroNav were refined, including research biopsy for elucidating tumor heterogeneity and correlative imaging. Augmented reality via smartphone was validated. The CIO team continued with impactful COVID-19 discoveries and assembled multi-national datasets and partnerships, with commercialized output (see COVID-19 annual report).
介入肿瘤学中心 (CIO) 成立于 NIH 临床中心 (CC),旨在开发和转化用于局部癌症治疗的图像引导技术。该中心是 CC 和国家癌症研究所 (NCI) 以及 NIBIB 之间的合作项目。该中心利用每个合作伙伴的优势,研究成像技术和设备如何以精确靶向、微创或无创的方式诊断和治疗局部癌症。通过这样做,首席信息官弥合了诊断和治疗之间以及新兴技术和程序医学之间的差距。先进的成像方法开创了早期检测癌症的时代,这些癌症通常局限于单个器官或区域,例如肝脏或前列腺。介入肿瘤学通常为癌症患者提供局部或区域治疗选择,以增强标准的全身或基于器官的癌症治疗。 CIO 研究人员利用 CC 的跨学科、转化环境来调查和优化如何以及何时结合药物、设备和多模态成像导航。例如,“可激活”药物可以注射到纳米级或微米级载体或气泡内的静脉或动脉中,然后使用“融合成像”、“增强现实”或“深度学习”通过针、导管或超声波直接部署在肿瘤中,使医生能够以更标准化的方式在身体中导航,并使用最新的先进成像技术进行实时可视化,例如 例如磁共振成像 (MRI)、正电子发射断层扫描 (PET)、计算机断层扫描 (CT)、锥形束 CT (CBCT) 或超声波。重复使用手术前的图像来引导设备向疾病部位提供靶向治疗,从而使手术更具成本效益,因为它不需要成像系统实际存在来利用先前的成像信息。例如,先前的前列腺 MRI 可用于通过使用“医用 GPS”针和超声波来帮助引导活检或局部消融,而无需在手术过程中占用或束缚 MRI 系统。在另一个例子中,细针或光声或电波可用于消融肿瘤并增强靶向药物输送。能源包括高强度聚焦超声、冷冻、微波、激光、组织解剖、电穿孔和射频。研究人员还扩大了对图像引导药物输送或图像引导“药物绘画”的研究,其中图像可用于将特定药物开到特定区域,通过将靶向、可成像或可激活药物与局部能量或热量相结合,将药物部署在专门设计的微米或纳米颗粒中。该中心提供了一个论坛,鼓励内科、外科、泌尿外科、放射肿瘤学以及介入放射学/分子干预领域的研究人员和患者护理专家之间的合作。CC 为此类合作转化研究提供了一个特殊的环境。其他主要项目组成部分包括开发用于个性化药物研究的新图像引导方法(或在药物发现过程中跟踪对研究药物的组织反应)以及涉及新微米或纳米级药物和载体、设备、图像引导机器人或增强现实设备的首次人体研究,以增强程序的自动化和标准化。靶向序贯活检是跨越时间和空间坐标的药物发现或生物标志物表征的强大工具。 教育和交叉培训是该计划的另一个重要组成部分。不同学科之间、研究工作和患者护理之间以及诊断和治疗之间存在着巨大差距。这些间隙可以通过先进的图像方法进行整合以进行局部治疗。 CIO 学员接触到各种各样的学科思想,这凸显了 NIH 独特的翻译氛围,从工作台到床边都是规则。具体目标包括: 1. 开发介入肿瘤学中没有的培训和教育途径 2. 开发用于智能活检和生物标志物采购的新型图像引导方法,以支持靶向治疗 3. 使用新型微创介入肿瘤学技术支持患者护理,特别是在肝脏、肾脏和前列腺领域 4. 开展介入肿瘤学新技术和技术的研究。该项目具有理想且独特的定位,提供一个结合培训、患者护理以及临床前和体内转化研究的跨学科环境,以加速介入肿瘤学和分子靶向干预的进展。重点是转化模型、转化工具、实际可交付成果和满足特定转化里程碑的多学科范式,以满足短期临床需求。癌症深度学习的目标是定义途径和工具包,以促进数字病理学与特定癌症和癌症干预措施的分子和成像信息的未来整合。 CIO 管理 10 个临床前方案和 5 个临床方案。 CIO 培养了许多学生、住院医师、研究员、博士生、初级教员、访问科学家、工程师和合作科学家,他们在学术生涯中取得了成功,并在介入放射学、放射学、泌尿学、放射肿瘤学、兽医学以及学术和工业界的各种高级职位上执业。建立了土拨鼠 HCC 模型并针对 IR 和免疫调节剂进行了表征。在免疫效果和免疫抵抗方面比较了热消融与冷冻消融。为患者开发了新颖的软件和硬件。将智能手机的增强现实与复合消融的标准引导系统进行比较。 CIO 链接到 NCI AI 资源,用于 CCR 和癌症数据科学生态系统中的深度学习任务。融合引导消融术是为办公室环境开发和部署的,就像完全在直肠外使用针和超声进行的前列腺活检一样。智能手机干预被带到诊所。 CIO 实现了人类在热消融过程中使用人工智能和深度学习进行半自动分割和配准的第一,在临床上对无框架或步进阶段的经会阴手持式超声融合活检进行了表征,从而能够对前列腺癌进行准确的干预,而无需以任何方式涉及直肠。在转化动物实验室中,CIO 表征了土拨鼠肝炎诱发的 HCC 的分子免疫相关性,开发了一种使用融合和可成像药物洗脱珠进行药物剂量涂敷的药物递送模型,开发并部署了免疫珠,可在局部导管递送至土拨鼠 HCC 后洗脱免疫调节剂,表征了土拨鼠肝癌中冷冻检查点抑制的临床前增强作用,以及 小鼠体内肿瘤的冷冻和射频消融。设计了用于美国部署的免疫泡。多种珠子化学成分和注射凝胶配方得到了改进。开发了多种设备,包括基于视频的支气管镜跟踪系统,无需机器人或电磁硬件。对 PercuNav 和 UroNav 进行了改进,包括用于阐明肿瘤异质性和相关成像的研究活检。通过智能手机的增强现实得到了验证。 CIO 团队继续进行有影响力的 COVID-19 发现,并收集跨国数据集和合作伙伴关系,并提供商业化成果(请参阅 COVID-19 年度报告)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradford Wood其他文献

Bradford Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradford Wood', 18)}}的其他基金

Interventional Oncology
介入肿瘤学
  • 批准号:
    10022065
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10262633
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
  • 批准号:
    10262659
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation Tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10691768
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Core Research Services for Molecular Imaging and Imaging Sciences
分子成像和成像科学的核心研究服务
  • 批准号:
    7733649
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
  • 批准号:
    10920175
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    8952855
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Optical and electromagnetic tracking guidance for hepatic interventions
肝脏干预的光学和电磁跟踪指导
  • 批准号:
    10691780
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10920176
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10022063
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似海外基金

心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
  • 批准号:
    24K11201
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
  • 批准号:
    24K11281
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334777
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334775
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
  • 批准号:
    EP/Z001145/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
  • 批准号:
    2320040
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了