Comprehensive multimodal analysis of patients with neuroimmunological diseases
神经免疫疾病患者的综合多模态分析
基本信息
- 批准号:10927912
- 负责人:
- 金额:$ 134.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgeAgingAlgorithmsAtrophicAutopsyBiological MarkersBlindedCentral Nervous SystemCentral Nervous System DiseasesCerebrospinal FluidChildhoodClinicalClinical DataClinical TrialsCopy Number PolymorphismDataData SetDevelopmentDiagnosisDiseaseDrug ScreeningElderlyEmploymentEvaluationFunctional disorderFutureGenetic TranscriptionHeterogeneityHumanImage AnalysisImmuneImmune systemIndividualInjuryKnowledgeLesionLightLinear RegressionsLiteratureLongevityLongitudinal cohortMachine LearningMagnetic Resonance ImagingMeasuresMediatingMeta-AnalysisModelingMolecularMultiple SclerosisNervous System TraumaNeurologic ExaminationNiemann-Pick DiseasesOutcomePaperPathogenicityPatient CarePatientsPerformancePersonsPharmacodynamicsPhenotypePhysiologicalProcessPrognostic MarkerProteinsProtocols documentationPublishingRare DiseasesRelapsing-Remitting Multiple SclerosisSensitivity and SpecificitySerumSeveritiesSpecificitySpeedSpinal CordStandardizationStructureTestingTherapeutic AgentsTissuesTrainingUnited States Food and Drug AdministrationValidationWorkbiomarker selectionbrain magnetic resonance imagingcentral nervous system injurycerebral atrophyclinical carecognitive disabilitycohortcombinatorialdisabilitydrug developmenteffective therapyexome sequencinggenetic variantgradient boostinghealthy volunteerimmunomodulatory therapiesimmunoregulationmachine learning algorithmmodel buildingmolecular markermultimodalitymultiple sclerosis patientmultiple sclerosis treatmentnervous system disorderneurofilamentneuroimmunologic diseaseneuroprotectionparticipant enrollmentphase II trialphysically handicappedpredictive modelingprospectiverandom forestresearch clinical testingresponserhoscreeningsevere COVID-19sextissue repairtooltreatment responsewhite matter
项目摘要
Neuroimmunological diseases of the central nervous system (CNS) represent a growing spectrum of diagnoses, most of which are considered rare disorders. The pathophysiology of these diseases is poorly understood, and effective therapies are sporadic. The most common immune-mediated CNS disease is multiple sclerosis (MS). The initial stage of MS, relapsing-remitting MS (RRMS) can be effectively treated by immunomodulatory treatments, if these are initiated at young age, before the substantial CNS damage occurred. Although there are currently more than 20 Food and Drug Administration (FDA)-approved treatments of MS, their efficacy on disability progression strongly declines with advancing age of patients, so that after age of 54 years, no efficacy on disability progression is seen on a group level. This protocol is advancing knowledge about disease mechanisms that are not targeted by current FDA-approved treatments and is also developing and validating tools of clinical utility.
This review period (October 2022-August 2023) we have generated following results:
1. While autopsy studies identify many abnormalities in the central nervous system (CNS) of subjects dying with neurological diseases, without their quantification in living subjects across the lifespan, pathogenic processes cannot be differentiated from epiphenomena. Using machine learning (ML), we searched for likely pathogenic mechanisms of multiple sclerosis (MS). We aggregated cerebrospinal fluid (CSF) biomarkers from 1,305 proteins, measured blindly in the training dataset of untreated MS patients (N=129), into models that predict past and future speed of disability accumulation across all MS phenotypes. Healthy volunteers (N=24) data differentiated natural aging and sex effects from MS-related mechanisms. Resulting models, validated (Rho 0.40-0.51, p<0.0001) in an independent longitudinal cohort (N=98), and uncovered intra-individual molecular heterogeneity. While candidate pathogenic processes must be validated in successful clinical trials, measuring them in living people will enable screening drugs for desired pharmacodynamic effects. This will facilitate drug development making it hopefully more efficient and successful.
2. Composite MRI scales of central nervous system tissue destruction correlate stronger with clinical outcomes than their individual components in multiple sclerosis (MS) patients. Using machine learning (ML), we previously developed Combinatorial MRI scale (COMRISv1) solely from semi-quantitative (semi-qMRI) biomarkers. Here, we asked how much better COMRISv2 might become with the inclusion of quantitative (qMRI) volumetric features and employment of more powerful ML algorithm. The prospectively acquired MS patients, divided into training (n=172) and validation (n=83) cohorts underwent brain MRI imaging and clinical evaluation. Neurological examination was transcribed to NeurEx App that automatically computes disability scales. qMRI features were computed by lesion-TOADS algorithm. Modified random forest pipeline selected biomarkers for optimal model(s) in the training cohort. COMRISv2 models validated moderate correlation with cognitive disability (Rho = 0.674; Linhs concordance coefficient CCC = 0.458; p<0.001) and strong correlations with physical disability (Spearman Rho = 0.830-0.852; CCC = 0.789-0.823; p<0.001). The NeurEx led to the strongest COMRISv2 model. Addition of qMRI features enhanced performance only of cognitive disability model, likely because semi-qMRI biomarkers measure infratentorial injury with greater accuracy. COMRISv2 models predict most granular clinical scales in MS with remarkable criterion validity, expanding scientific utilization of cohorts with missing clinical data.
3. Both aging and multiple sclerosis (MS) cause central nervous system (CNS) atrophy. Excess brain atrophy in MS has been interpreted as accelerated aging. Current paper tests an alternative hypothesis: MS causes CNS atrophy by mechanism(s) different from physiological aging. Thus, subtracting effects of physiological confounders on CNS structures would isolate MS-specific effects.
Standardized brain MRI and neurological examination were acquired prospectively in 649 participants enrolled in ClinicalTrials.gov Identifier: NCT00794352 protocol. CNS volumes were measured retrospectively, by Lesion-TOADS algorithm and by Spinal Cord Toolbox, in a blinded fashion. Physiological confounders identified in 80 healthy volunteers were regressed out by stepwise multiple linear regression. MS specificity of confounder-adjusted MRI features was assessed in non-MS cohort (n=160). MS patients were randomly split into training (n=277) and validation (n=132) cohorts. Gradient boosting machine (GBM) models were generated in MS training cohort from unadjusted and confounder-adjusted CNS volumes against four disability scales. Confounder adjustment highlighted MS-specific progressive loss of CNS white matter. GBM model performance decreased substantially from training to cross-validation, to independent validation cohorts, but all models predicted cognitive and physical disability with low p-values and effect sizes that outperforms published literature based on recent meta-analysis. Models built from confounder-adjusted MRI predictors outperformed models from unadjusted predictors in the validation cohort. GBM models from confounder-adjusted volumetric MRI features reflect MS-specific CNS injury, and due to stronger correlation with clinical outcomes compared to brain atrophy these models should be explored in future MS clinical trials.
4. Our work this period also contributed to meta-analyses that demonstrated value of serum neurofilament light chain (NFL) biomarker in clinical care of patients with severe COVID19, to paper that describes clinical value of combining exome sequencing with copy number variants genetic evaluation of unknown pediatric disorder and to work that defined value of NFL as biomarker of severity and therapeutic response in Niemann-Pick Disease, Type C1.
中枢神经系统 (CNS) 的神经免疫疾病的诊断范围不断扩大,其中大多数被认为是罕见疾病。人们对这些疾病的病理生理学知之甚少,有效的治疗方法也是零星的。最常见的免疫介导的中枢神经系统疾病是多发性硬化症 (MS)。多发性硬化症的初始阶段,即复发缓解型多发性硬化症 (RRMS),如果在中枢神经系统严重损伤发生之前在年轻时开始,可以通过免疫调节治疗得到有效治疗。尽管目前有超过 20 种经美国食品和药物管理局 (FDA) 批准的多发性硬化症治疗方法,但它们对残疾进展的疗效随着患者年龄的增长而急剧下降,因此在 54 岁之后,在群体水平上看不到对残疾进展的疗效。该协议正在推进有关当前 FDA 批准的治疗方法未针对的疾病机制的知识,并且还在开发和验证临床实用工具。
本次审查期间(2022年10月至2023年8月)我们得出了以下结果:
1. 虽然尸检研究发现死于神经系统疾病的受试者的中枢神经系统 (CNS) 有许多异常,但没有在整个生命周期中对活着的受试者进行量化,因此无法将致病过程与副现象区分开来。使用机器学习 (ML),我们寻找多发性硬化症 (MS) 的可能致病机制。我们将来自 1,305 种蛋白质的脑脊液 (CSF) 生物标志物(在未经治疗的多发性硬化症患者 (N=129) 的训练数据集中进行盲目测量)聚集到模型中,以预测所有多发性硬化症表型过去和未来的残疾累积速度。健康志愿者 (N=24) 的数据将自然衰老和性别影响与 MS 相关机制区分开来。由此产生的模型在独立纵向队列 (N=98) 中得到验证(Rho 0.40-0.51,p<0.0001),并揭示了个体内分子异质性。虽然候选致病过程必须在成功的临床试验中得到验证,但在活人中进行测量将能够筛选药物以获得所需的药效作用。这将促进药物开发,使其更有效率、更成功。
2. 在多发性硬化症 (MS) 患者中,中枢神经系统组织破坏的复合 MRI 量表与临床结果的相关性比其单独成分的相关性更强。我们之前使用机器学习 (ML),仅根据半定量 (semi-qMRI) 生物标志物开发了组合 MRI 量表 (COMRISv1)。在这里,我们询问 COMRISv2 如果包含定量 (qMRI) 体积特征并采用更强大的 ML 算法,可能会变得多么好。前瞻性获得的 MS 患者分为训练组 (n=172) 和验证组 (n=83),接受脑 MRI 成像和临床评估。神经学检查被转录到 NeurEx App 中,自动计算残疾等级。 qMRI 特征通过 lesion-TOADS 算法计算。修改后的随机森林管道选择了训练队列中最佳模型的生物标志物。 COMRISv2 模型验证了与认知障碍的中度相关性(Rho = 0.674;Linhs 一致性系数 CCC = 0.458;p<0.001)以及与身体残疾的强相关性(Spearman Rho = 0.830-0.852;CCC = 0.789-0.823;p<0.001)。 NeurEx 催生了最强大的 COMRISv2 模型。 qMRI 的添加仅增强了认知障碍模型的性能,可能是因为半 qMRI 生物标志物可以更准确地测量幕下损伤。 COMRISv2 模型以显着的标准有效性预测 MS 中最精细的临床量表,扩大了对缺失临床数据的队列的科学利用。
3. 衰老和多发性硬化症(MS)都会导致中枢神经系统(CNS)萎缩。多发性硬化症中过度的脑萎缩被解释为加速衰老。目前的论文测试了另一种假设:多发性硬化症通过与生理衰老不同的机制导致中枢神经系统萎缩。因此,减去生理混杂因素对中枢神经系统结构的影响将隔离多发性硬化症特异性的影响。
对参加 ClinicalTrials.gov 标识符:NCT00794352 方案的 649 名参与者前瞻性地进行了标准化脑部 MRI 和神经学检查。通过 Lesion-TOADS 算法和 Spinal Cord Toolbox 以盲法回顾性测量 CNS 体积。通过逐步多元线性回归,消除了在 80 名健康志愿者中发现的生理混杂因素。在非 MS 队列中评估了混杂因素调整的 MRI 特征的 MS 特异性 (n=160)。 MS 患者被随机分为训练组 (n=277) 和验证组 (n=132)。梯度增强机 (GBM) 模型是在 MS 训练队列中根据四种残疾量表根据未调整和混杂因素调整的 CNS 体积生成的。混杂因素调整强调了 MS 特异性的中枢神经系统白质逐渐丧失。从训练到交叉验证,再到独立验证队列,GBM 模型的性能大幅下降,但所有模型都以较低的 p 值和效果大小预测了认知和身体残疾,其效果优于基于最近荟萃分析的已发表文献。在验证队列中,根据混杂因素调整的 MRI 预测变量构建的模型优于未调整的预测变量建立的模型。来自混杂因素调整的体积 MRI 特征的 GBM 模型反映了 MS 特异性 CNS 损伤,并且由于与脑萎缩相比,这些模型与临床结果的相关性更强,因此应在未来的 MS 临床试验中探索这些模型。
4. 我们这一时期的工作还促成了荟萃分析,证明了血清神经丝轻链 (NFL) 生物标志物在重症新冠肺炎患者临床护理中的价值,撰写了描述外显子组测序与未知儿科疾病拷贝数变异遗传评估相结合的临床价值的论文,并在 Niemann-Pick 中定义了 NFL 作为严重程度和治疗反应生物标志物的价值 疾病,C1 型。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Confounder-adjusted MRI-based predictors of multiple sclerosis disability.
- DOI:10.3389/fradi.2022.971157
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kim, Yujin;Varosanec, Mihael;Kosa, Peter;Bielekova, Bibiana
- 通讯作者:Bielekova, Bibiana
Enhancing the clinical value of serum neurofilament light chain measurement.
增强血清神经丝轻链测量的临床价值。
- DOI:10.1172/jci.insight.161415
- 发表时间:2022-08-08
- 期刊:
- 影响因子:8
- 作者:Kosa, Peter;Masvekar, Ruturaj;Komori, Mika;Phillips, Jonathan;Ramesh, Vighnesh;Varosanec, Mihael;Sandford, Mary;Bielekova, Bibiana
- 通讯作者:Bielekova, Bibiana
Drug library screen identifies inhibitors of toxic astrogliosis.
- DOI:10.1016/j.msard.2022.103499
- 发表时间:2022-03
- 期刊:
- 影响因子:4
- 作者:Masvekar R;Kosa P;Barbour C;Milstein JL;Bielekova B
- 通讯作者:Bielekova B
Molecular models of multiple sclerosis severity identify heterogeneity of pathogenic mechanisms.
- DOI:10.1038/s41467-022-35357-4
- 发表时间:2022-12-12
- 期刊:
- 影响因子:16.6
- 作者:Kosa, Peter;Barbour, Christopher;Varosanec, Mihael;Wichman, Alison;Sandford, Mary;Greenwood, Mark;Bielekova, Bibiana
- 通讯作者:Bielekova, Bibiana
Neurofilament light chain levels correlate with clinical measures in CLN3 disease.
- DOI:10.1038/s41436-020-01035-3
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Dang Do AN;Sinaii N;Masvekar RR;Baker EH;Thurm AE;Soldatos AG;Bianconi SE;Bielekova B;Porter FD
- 通讯作者:Porter FD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bibiana Bielekova其他文献
Bibiana Bielekova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bibiana Bielekova', 18)}}的其他基金
Immunoregulatory NK cells in Multiple Sclerosis
多发性硬化症中的免疫调节 NK 细胞
- 批准号:
7370067 - 财政年份:2007
- 资助金额:
$ 134.32万 - 项目类别:
From therapeutic mechanisms to unraveling the pathophysiology of MS
从治疗机制到揭示多发性硬化症的病理生理学
- 批准号:
8342276 - 财政年份:
- 资助金额:
$ 134.32万 - 项目类别:
Comprehensive multimodal analysis of patients with neuroimmunological diseases
神经免疫疾病患者的综合多模态分析
- 批准号:
8940098 - 财政年份:
- 资助金额:
$ 134.32万 - 项目类别:
From therapeutic mechanisms to unraveling the pathophysiology of MS
从治疗机制到揭示多发性硬化症的病理生理学
- 批准号:
8158239 - 财政年份:
- 资助金额:
$ 134.32万 - 项目类别:
From therapeutic mechanisms to unraveling the pathophysiology of MS
从治疗机制到揭示多发性硬化症的病理生理学
- 批准号:
8557073 - 财政年份:
- 资助金额:
$ 134.32万 - 项目类别:
Comprehensive multimodal analysis of patients with neuroimmunological diseases
神经免疫疾病患者的综合多模态分析
- 批准号:
8342275 - 财政年份:
- 资助金额:
$ 134.32万 - 项目类别:
Comprehensive multimodal analysis of patients with neuroimmunological diseases
神经免疫疾病患者的综合多模态分析
- 批准号:
8746831 - 财政年份:
- 资助金额:
$ 134.32万 - 项目类别:
From therapeutic mechanisms to unraveling the pathophysiology of MS
从治疗机制到揭示多发性硬化症的病理生理学
- 批准号:
10927913 - 财政年份:
- 资助金额:
$ 134.32万 - 项目类别:
From therapeutic mechanisms to unraveling the pathophysiology of MS
从治疗机制到揭示多发性硬化症的病理生理学
- 批准号:
7735343 - 财政年份:
- 资助金额:
$ 134.32万 - 项目类别:
Comprehensive multimodal analysis of patients with neuroimmunological diseases
神经免疫疾病患者的综合多模态分析
- 批准号:
8158238 - 财政年份:
- 资助金额:
$ 134.32万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
- 批准号:
22KJ2960 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
- 批准号:
23KK0156 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
- 批准号:
10677409 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
- 批准号:
497927 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
- 批准号:
10836835 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
- 批准号:
23K06378 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
- 批准号:
23K10845 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
- 批准号:
478877 - 财政年份:2023
- 资助金额:
$ 134.32万 - 项目类别:
Operating Grants














{{item.name}}会员




