Investigating the role of biomechanical forces on the enteric nervous system in Hirschsprung disease
研究生物力学力对先天性巨结肠症肠神经系统的作用
基本信息
- 批准号:10975058
- 负责人:
- 金额:$ 16.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
As a pediatric surgeon at Texas Children’s Hospital, the nation’s largest children’s hospital and a central hub for
the treatment of Hirschsprung’s disease (HSCR)—a disorder caused by defective enteric nervous system (ENS)
development, I strive not only to deliver excellent surgical care, but also to decipher the mechanisms behind
disease etiology. In my practice, I remove the abnormal, aganglionic intestine and pull-through “normal”
ganglionated intestine but continue to be perplexed by the nearly 50% incidence of postoperative bowel
dysfunction. Thus, my goal as an aspiring surgeon-scientist is to investigate the postnatal mechanisms that result
in these poor postoperative outcomes. The K08 program is an ideal foundation to develop the technical and
scientific skills I need to make translational impact for my patients. The present application lays out a five-year
educational and research plan focused on identifying drivers of persistent postoperative dysfunction in the
ganglionated HSCR colon microenvironment. Enteric neurons have long been recognized as mechanically
sensitive to extrinsic force (axial stretch and radial distention) and intrinsic mechanics (tissue stiffness), both of
which are present before and after HSCR surgery. It is not known how these forces affect ENS phenotype and
function, which raises the question of whether known mechanosensitive ion channels and/or focal adhesion
kinase (FAK) signaling could be pathophysiological mediators of ENS responses to tension. Consistent with our
logic, the ion channel Piezo1 and focal adhesion molecule FAK are ubiquitously present in the gastrointestinal
tract, but their role in ENS response to biomechanical forces requires further investigation. My data demonstrates
that HSCR intestine at baseline has a dysregulated ECM, which leads to changes in tissue stiffness, and that
extrinsic force further dysregulates the ECM. Still, it remains unclear how these changes in the ECM
microenvironment regulate the ENS. Therefore, we hypothesize that biomechanical forces on the intestine have
Piezo1-FAK dependent effects on the ENS and regulate ECM composition in a manner that governs the ENS
microenvironment, which ultimately contributes to gut dysfunction in HSCR. I will address this research question
in two aims, under the guidance of my mentor, Dr. Keswani, and expert scientific advisory committee. In Aim 1,
I will define the role of clinically relevant, extrinsic mechanical forces on the ENS in normal and HSCR intestine.
This will allow me to develop new technical expertise in live cell calcium imaging, ex vivo tissue culture, and in
vivo tension models to evaluate the signaling of Piezo1-FAK in ENS responses to extrinsic mechanical forces.
Aim 2 will focus on testing how biomechanical forces regulate the ECM to alter the ENS microenvironment in
HSCR, and whether changes in the ECM are indicative of post-surgical prognosis in HSCR. In this aim, I will
work with novel biomechanical and hydrogel models to investigate the interaction between the ENS and ECM,
and develop a novel risk prediction model using human HSCR tissue features. Completion of these aims will
launch my career as a surgeon-scientist with meaningful impact for the care for my patients.
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lily S Cheng其他文献
Lily S Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lily S Cheng', 18)}}的其他基金
Investigating the role of biomechanical forces on the enteric nervous system in Hirschsprung disease
研究生物力学力对先天性巨结肠症肠神经系统的作用
- 批准号:
10656571 - 财政年份:2022
- 资助金额:
$ 16.55万 - 项目类别:
Investigating the role of biomechanical forces on the enteric nervous system in Hirschsprung disease
研究生物力学力对先天性巨结肠症肠神经系统的作用
- 批准号:
10507464 - 财政年份:2022
- 资助金额:
$ 16.55万 - 项目类别:
相似国自然基金
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
- 批准号:82372275
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
- 批准号:82371070
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Mechanistic investigation into Frizzled-2 signaling for treatment of Osteogenesis Imperfecta
Frizzled-2 信号传导治疗成骨不全症的机制研究
- 批准号:
10680236 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别:
Integrative biophysical modeling for collective tissue mechanics
集体组织力学的综合生物物理建模
- 批准号:
10711311 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10738365 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别:
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
- 批准号:
10751099 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别:
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10877387 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别:
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
- 批准号:
10662142 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别:
CRCNS: Defining the role of astrogenesis in cortical folding
CRCNS:定义星形发生在皮质折叠中的作用
- 批准号:
10831118 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别:
Rapid non-invasive biomechanical imaging of neural crest cell migration in vivo
体内神经嵴细胞迁移的快速非侵入性生物力学成像
- 批准号:
10811154 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别:
Role of the Infrapatellar Fat Pad in the Development of Post-Traumatic Osteoarthritis Following Blunt Impact to the Knee Joint
髌下脂肪垫在膝关节钝性撞击后发生创伤后骨关节炎中的作用
- 批准号:
10654180 - 财政年份:2023
- 资助金额:
$ 16.55万 - 项目类别: