Protein Structure, Stability, and Amyloid Formation

蛋白质结构、稳定性和淀粉样蛋白形成

基本信息

  • 批准号:
    10926016
  • 负责人:
  • 金额:
    $ 54.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

We focus on the oncogenic network of Ras signaling. We have been seeking to decipher the mechanisms of the proteins, their autoinhibition and activation, at the detailed conformational level, aiming to understand and to discover their pharmacological susceptibilities. Our broad outlook further aims to uncover their detailed interactions with other proteins and with the cell membrane, and (felled) regulation. We have also been interested in their signaling pathways. We aim to determine the scenarios of exactly how key signaling nodes are activated (or repressed, in repressors) by oncogenic driver mutations, and regulated under normal control, and decipher the hallmarks of the propagation of their signaling to the cell cycle. Uncontrolled cell proliferation is a hallmark of cancer leading us to ask what the determinants that influence signaling strength are. For cell proliferation, signaling should be sufficiently strong. This wide-ranging scope motivates us to investigate protein kinases in solution, lipid kinase (at the membrane), adaptor proteins, and their dynamic associations. To address this daunting task, we focus on two major Ras pathways that feed into the cell cycle, MAPK and PI3K/mTOR. MAPK acts in cell division; PI3K/mTOR in cell growth. Both are required in proliferation. We aim to unravel allosteric activation and inhibition mechanisms of oncogenic proteins, allosteric therapeutics and signaling. Protein activation and inhibition involve conformational changes, which are the hallmarks of allostery. We seek to understand how allostery controls physiological function; how it can play a role in cancer, and how it can be harnessed by drugs. We consider the conformational ensembles of the proteins in solution and when membrane-anchored, and their assemblies. We also ask: What is productive signaling? How to define it, how to measure it, and what are the parameters that determine it? Further, what determines the strength of signaling from an upstream to a downstream protein in a specific cell such that it leads to cell proliferation? These questions have either not been considered or not resolved. Recently we also took up the compelling question of neurodevelopmental disorders (NDDs) and their connection to cancer. We ask the puzzling questions of how same-gene mutations can drive both cancer and NDDs and why individuals with NDD have a higher risk of cancer. Ras, MEK, PI3K, PTEN, and SHP2 are among the oncogenic proteins that can harbor mutations that encode diseases other than cancer. Understanding why some of their mutations can promote cancer, whereas others promote NDDs, and why even the same mutations may promote both phenotypes, has important clinical ramifications. Our thesis is that the immune and nervous systems co-evolve as the embryo develops. Immunity can release cytokines that activate MAPK signaling in neural cells. In specific embryonic brain cell types, dysregulated signaling that results from germline or embryonic mutations can promote changes in chromatin organization and gene accessibility, and thus expression levels of essential genes in neurodevelopment. In cancer, dysregulated signaling can emerge from sporadic somatic mutations during human life. NDDs and cancer share similarities. We suggested that in NDDs, immunity, and cancer, there appears an almost invariable involvement of small GTPases (e.g., Ras, RhoA, Rac) and their pathways. TLRs, IL-1, GIT1, and FGFR signaling pathways, all can be dysregulated in NDDs and cancer. While there are signaling similarities, decisive differentiating factors are timing windows, and cell type specific perturbation levels, pointing to chromatin reorganization. Pharmacological treatment can inhibit the action of the mutant protein; however, drug resistance almost invariably emerges. Multiple studies revealed that cancer drug resistance is based upon a plethora of distinct mechanisms. Drug resistance mutations can occur in the same protein or in different proteins; as well as in the same pathway or in parallel pathways, bypassing the intercepted signaling. The dilemma that the clinical oncologist is facing is that not all the genomic alterations as well as alterations in the tumor microenvironment that facilitate cancer cell proliferation are known, and neither are the alterations that are likely to promote metastasis. For example, the common KRasG12C driver mutation emerges in different cancers. Most occur in NSCLC, but some occur, albeit to a lower extent, in colorectal cancer and pancreatic ductal carcinoma. The responses to KRasG12C inhibitors are variable and fall into three categories, (i) new point mutations in KRas, or multiple copies of KRAS G12C which lead to higher expression level of the mutant protein; (ii) mutations in genes other than KRAS; (iii) original cancer transitioning to other cancer(s). Resistance to adagrasib, an experimental antitumor agent exerting its cytotoxic effect as a covalent inhibitor of the G12C KRas, indicated that half of the cases present multiple KRas mutations as well as allele amplification. Redundant or parallel pathways included MET amplification; emerging driver mutations in NRAS, BRAF, MAP2K1, and RET; gene fusion events in ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN tumor suppressors. We explore the molecular mechanisms underlying drug resistance while focusing on those emerging to common targeted cancer drivers. We also address questions of why cancers with a common driver mutation are unlikely to evolve a common drug resistance mechanism, and whether one can predict the likely mechanisms that the tumor cell may develop. These vastly important and tantalizing questions in drug discovery, and broadly in precision medicine, are the focus of our present work. We suggest that target combinations should preferentially be selected and prioritized with the help of the emerging massive compute power which enables artificial intelligence, and the increased gathering of data to overcome its insatiable needs. We aim to predict which proteins can interact and how, through a structure-based interface mimicry strategy. Efficient and reliable prediction of new interactions can allow identification of potential targets. Powerful protein-protein interaction prediction tools can map interactions and predict how pathogens can hijack signaling in the host cell, which can be tested by experiment. Available experimental structural data are scant, and the combinatorial landscape of host protein-pathogen interactions is vast. We are working to further enhance our server to include more interactions and modeled proteins with AI-adopted prediction methods.
我们关注 Ras 信号传导的致癌网络。我们一直在寻求在详细的构象水平上破译蛋白质的机制、它们的自抑制和激活,旨在了解和发现它们的药理敏感性。我们的广阔前景进一步旨在揭示它们与其他蛋白质和细胞膜的详细相互作用,以及(降低)调节。我们也对它们的信号通路感兴趣。我们的目标是确定关键信号传导节点如何被致癌驱动突变激活(或在阻遏物中被抑制),并在正常控制下进行调节,并破译其信号传导到细胞周期的传播特征。不受控制的细胞增殖是癌症的一个标志,这让我们不禁要问影响信号强度的决定因素是什么。对于细胞增殖,信号传导应该足够强。这种广泛的范围促使我们研究溶液中的蛋白激酶、脂质激酶(在膜上)、衔接蛋白及其动态关联。为了解决这一艰巨的任务,我们重点关注进入细胞周期的两条主要 Ras 通路:MAPK 和 PI3K/mTOR。 MAPK 参与细胞分裂; PI3K/mTOR 在细胞生长中的作用。两者都是增殖所必需的。我们的目标是揭示致癌蛋白的变构激活和抑制机制、变构治疗和信号传导。蛋白质激活和抑制涉及构象变化,这是变构的标志。我们试图了解变构如何控制生理功能;它如何在癌症中发挥作用,以及如何通过药物利用它。我们考虑溶液中和膜锚定时蛋白质的构象整体,以及它们的组装。我们还想问:什么是有效信号?如何定义它,如何衡量它,决定它的参数是什么?此外,是什么决定了特定细胞中从上游到下游蛋白质的信号强度,从而导致细胞增殖?这些问题要么没有被考虑,要么没有得到解决。最近,我们还讨论了神经发育障碍 (NDD) 及其与癌症的关系这一引人注目的问题。我们提出了一些令人费解的问题:相同基因突变如何导致癌症和 NDD,以及为什么患有 NDD 的个体患癌症的风险更高。 Ras、MEK、PI3K、PTEN 和 SHP2 属于致癌蛋白,它们可能含有编码癌症以外疾病的突变。了解为什么它们的一些突变可以促进癌症,而另一些突变可以促进 NDD,以及为什么即使相同的突变也可能促进这两种表型,具有重要的临床意义。我们的论点是,免疫系统和神经系统随着胚胎的发育而共同进化。免疫可以释放激活神经细胞中 MAPK 信号传导的细胞因子。在特定的胚胎脑细胞类型中,种系或胚胎突变导致的信号传导失调可以促进染色质组织和基因可及性的变化,从而促进神经发育中必需基因的表达水平。在癌症中,信号传导失调可能是由人类生命中的零星体细胞突变引起的。 NDD 和癌症有相似之处。我们认为,在 NDD、免疫和癌症中,小 GTP 酶(例如 Ras、RhoA、Rac)及其通路几乎总是参与其中。 TLR、IL-1、GIT1 和 FGFR 信号通路在 NDD 和癌症中都可能失调。虽然存在信号相似性,但决定性的差异因素是时间窗口和细胞类型特异性扰动水平,表明染色质重组。药物治疗可以抑制突变蛋白的作用;然而,耐药性几乎总是会出现。多项研究表明,癌症耐药性基于多种不同的机制。耐药突变可以发生在同一蛋白质上,也可以发生在不同蛋白质上;以及在同一途径或平行途径中,绕过被拦截的信号传导。临床肿瘤学家面临的困境是,并非所有促进癌细胞增殖的基因组改变和肿瘤微环境的改变都是已知的,而且可能促进转移的改变也是未知的。例如,常见的 KRasG12C 驱动突变出现在不同的癌症中。大多数发生在非小细胞肺癌中,但也有一些发生在结直肠癌和胰腺导管癌中,尽管程度较低。对 KRasG12C 抑制剂的反应各不相同,分为三类:(i) KRas 中的新点突变,或 KRAS G12C 的多个拷贝,导致突变蛋白的表达水平更高; (ii) KRAS 以外的基因突变; (iii) 原发癌症转变为其他癌症。阿达格拉西(adagrasib)是一种实验性抗肿瘤药物,作为 G12C KRas 的共价抑制剂发挥其细胞毒性作用,对阿达格拉西的耐药性表明,一半的病例存在多种 KRas 突变以及等位基因扩增。冗余或平行途径包括 MET 扩增; NRAS、BRAF、MAP2K1 和 RET 中出现的驱动突变; ALK、RET、BRAF、RAF1 和 FGFR3 中的基因融合事件;以及 NF1 和 PTEN 肿瘤抑制因子的功能丧失突变。我们探索耐药性背后的分子机制,同时关注那些新兴的常见目标癌症驱动因素。我们还解决了为什么具有共同驱动突变的癌症不太可能进化出共同的耐药机制,以及是否可以预测肿瘤细胞可能发展的可能机制的问题。这些在药物发现以及广泛的精准医学中极其重要且诱人的问题是我们目前工作的重点。我们建议,应优先选择目标组合并优先考虑新兴的海量计算能力,以实现人工智能,并增加数据收集以克服其永不满足的需求。我们的目标是通过基于结构的界面模拟策略来预测哪些蛋白质可以相互作用以及如何相互作用。对新相互作用的有效且可靠的预测可以识别潜在的目标。强大的蛋白质-蛋白质相互作用预测工具可以绘制相互作用图并预测病原体如何劫持宿主细胞中的信号传导,这可以通过实验进行测试。可用的实验结构数据很少,而宿主蛋白质与病原体相互作用的组合前景广阔。我们正在努力进一步增强我们的服务器,以包含更多的交互和通过人工智能采用的预测方法进行建模的蛋白质。

项目成果

期刊论文数量(168)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhibition of Nonfunctional Ras.
  • DOI:
    10.1016/j.chembiol.2020.12.012
  • 发表时间:
    2021-02-18
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Nussinov R;Jang H;Gursoy A;Keskin O;Gaponenko V
  • 通讯作者:
    Gaponenko V
The origin of allosteric functional modulation: multiple pre-existing pathways.
  • DOI:
    10.1016/j.str.2009.06.008
  • 发表时间:
    2009-08-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    del Sol A;Tsai CJ;Ma B;Nussinov R
  • 通讯作者:
    Nussinov R
Comparison of the Conformations of KRAS Isoforms, K-Ras4A and K-Ras4B, Points to Similarities and Significant Differences.
  • DOI:
    10.1021/acs.jpcb.5b11110
  • 发表时间:
    2016-02-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chakrabarti M;Jang H;Nussinov R
  • 通讯作者:
    Nussinov R
The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation.
Cullin环E3连接酶机械中泛素化的机制:底物方向的构象控制。
  • DOI:
    10.1371/journal.pcbi.1000527
  • 发表时间:
    2009-10
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Liu J;Nussinov R
  • 通讯作者:
    Nussinov R
Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases.
  • DOI:
    10.1016/j.jmb.2010.01.022
  • 发表时间:
    2010-03-12
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Liu J;Nussinov R
  • 通讯作者:
    Nussinov R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruth Nussinov其他文献

Ruth Nussinov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruth Nussinov', 18)}}的其他基金

Method Development: Efficient Computer Vision Based Algo
方法开发:基于高效计算机视觉的算法
  • 批准号:
    7291814
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:
Method Development: Efficient Computer Vision Based Algorithms
方法开发:基于高效计算机视觉的算法
  • 批准号:
    7965320
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:
Method Development: Efficient Computer Vision Based Algorithms
方法开发:基于高效计算机视觉的算法
  • 批准号:
    8937737
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:
Biomolecular Recognition and Binding Mechanisms
生物分子识别和结合机制
  • 批准号:
    9153571
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:
Method Development: Efficient Computer Vision Based Algorithms
方法开发:基于高效计算机视觉的算法
  • 批准号:
    8349006
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:
Protein Structure, Stability, and Amyloid Formation
蛋白质结构、稳定性和淀粉样蛋白形成
  • 批准号:
    8349004
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:
Biomolecular Recognition and Binding Mechanisms
生物分子识别和结合机制
  • 批准号:
    8349005
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:
Protein Structure, Stability, and Amyloid Formation
蛋白质结构、稳定性和淀粉样蛋白形成
  • 批准号:
    8552693
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:
Biomolecular Recognition and Binding Mechanisms
生物分子识别和结合机制
  • 批准号:
    10014370
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:
Method Development: Efficient Computer Vision Based Algorithms
方法开发:基于高效计算机视觉的算法
  • 批准号:
    10262089
  • 财政年份:
  • 资助金额:
    $ 54.36万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了