Integrative and interactive analyses of host transcriptional response to COVID-19 and other respiratory viral infections

宿主对 COVID-19 和其他呼吸道病毒感染的转录反应的综合和交互式分析

基本信息

  • 批准号:
    10618134
  • 负责人:
  • 金额:
    $ 7.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-05 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The current pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to global public health concerns. This novel coronavirus disease (COVID-19) shares similar clinical symptoms with diseases caused by other viruses in the coronavirus family and other common respiratory viruses. When an infectious agent replicates within a host organism, the host interacts with, and responds to the virus with various mechanisms. Given the varying severity across patients and emergence of new SARS-CoV-2 variants, there is an urgent need to understand how the host responds to COVID-19 and its variants. RNA sequencing (RNA-seq) data that profile transcriptional response to SARS-CoV-2 and other respiratory viral infections are available from public databases. Comparing the gene signatures across respiratory viruses will identify similarities and differences of how the host responds to these infections. In particular, compendium analyses in which multiple datasets are integrated bring great opportunities for generating novel biological hypotheses. However, compendium analysis of RNA-seq data generated across different laboratories is an onerous task given the different protocols, parameters, software and software versions used at the time of analyses. This proposal focuses on the development of software tools to facilitate re-analyses of existing host-response RNA-seq data to create a compendium of gene signatures using the same set of analytical tools and input parameters. Our deliverables will include workflows with saved input files and parameters, fixed software versions and dependencies that will facilitate reproducibility and collaboration. We will provide an accessible graphical user interface that allows users to create custom signature sets by querying the data and if desired, re-analyzing the data using one of our provided workflows or a workflow of their own choosing. Users will be able to filter biological variables, perform cross species analysis, compare gene signatures to other gene set repositories. In addition, we will create an accessible dashboard that will support the query, download, visualization and reproducible analysis of gene expression data from SARS-CoV-2 and other common respiratory viruses. Tools will be provided to allow the user to interactively visualize the data and inform the choice of appropriate gene signatures. Not only will our software tools and dashboard provide an accessible front end, we will also develop an easy-to-use, scalable and cloud-enabled backend that enables efficient alignment of sequencing data. Our proposed project will empower biomedical scientists to experiment with different computational methods, input parameters (including the alignment step) across multiple datasets and respiratory viral infections. Thus, facilitating integrated and interactive analyses using datasets generated by multiple laboratories to advance our understanding of host transcriptional response to COVID-19.
项目总结

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ka Yee Yeung-Rhee其他文献

Ka Yee Yeung-Rhee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ka Yee Yeung-Rhee', 18)}}的其他基金

Integrative and interactive analyses of host transcriptional response to COVID-19 and other respiratory viral infections
宿主对 COVID-19 和其他呼吸道病毒感染的转录反应的综合和交互式分析
  • 批准号:
    10372463
  • 财政年份:
    2022
  • 资助金额:
    $ 7.77万
  • 项目类别:
Prediction and Network Construction Using High-throughput Data
利用高通量数据进行预测和网络构建
  • 批准号:
    7918948
  • 财政年份:
    2009
  • 资助金额:
    $ 7.77万
  • 项目类别:
Prediction and Network Construction Using High-throughput Data
利用高通量数据进行预测和网络构建
  • 批准号:
    7681282
  • 财政年份:
    2008
  • 资助金额:
    $ 7.77万
  • 项目类别:
Prediction and Network Construction Using High-throughput Data
利用高通量数据进行预测和网络构建
  • 批准号:
    8104045
  • 财政年份:
    2008
  • 资助金额:
    $ 7.77万
  • 项目类别:
Prediction and Network Construction Using High-throughput Data
利用高通量数据进行预测和网络构建
  • 批准号:
    8294758
  • 财政年份:
    2008
  • 资助金额:
    $ 7.77万
  • 项目类别:
Prediction and Network Construction Using High-throughput Data
利用高通量数据进行预测和网络构建
  • 批准号:
    7533087
  • 财政年份:
    2008
  • 资助金额:
    $ 7.77万
  • 项目类别:
Prediction and Network Construction Using High-throughput Data
利用高通量数据进行预测和网络构建
  • 批准号:
    8470899
  • 财政年份:
    2008
  • 资助金额:
    $ 7.77万
  • 项目类别:
Prediction and Network Construction Using High-throughput Data
利用高通量数据进行预测和网络构建
  • 批准号:
    7884325
  • 财政年份:
    2008
  • 资助金额:
    $ 7.77万
  • 项目类别:
Improved Pattern Recognition for Functional Genomics
改进功能基因组学的模式识别
  • 批准号:
    6765680
  • 财政年份:
    2004
  • 资助金额:
    $ 7.77万
  • 项目类别:
Improved Pattern Recognition for Functional Genomics
改进功能基因组学的模式识别
  • 批准号:
    7061736
  • 财政年份:
    2004
  • 资助金额:
    $ 7.77万
  • 项目类别:

相似海外基金

Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 7.77万
  • 项目类别:
    Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
  • 批准号:
    BB/X019802/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.77万
  • 项目类别:
    Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318830
  • 财政年份:
    2023
  • 资助金额:
    $ 7.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318831
  • 财政年份:
    2023
  • 资助金额:
    $ 7.77万
  • 项目类别:
    Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
  • 批准号:
    484699
  • 财政年份:
    2022
  • 资助金额:
    $ 7.77万
  • 项目类别:
    Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
  • 批准号:
    1949968
  • 财政年份:
    2020
  • 资助金额:
    $ 7.77万
  • 项目类别:
    Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
  • 批准号:
    1559829
  • 财政年份:
    2016
  • 资助金额:
    $ 7.77万
  • 项目类别:
    Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
  • 批准号:
    416848-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 7.77万
  • 项目类别:
    University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
  • 批准号:
    1062565
  • 财政年份:
    2011
  • 资助金额:
    $ 7.77万
  • 项目类别:
    Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
  • 批准号:
    261818-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 7.77万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了