Injectable Carbon Nanotube-Functionalized Hydrogel for miRNA Delivery

用于 miRNA 传递的可注射碳纳米管功能化水凝胶

基本信息

项目摘要

ABSTRACT microRNAs (miRNAs) have been proven to promote cardiac regeneration after myocardial infarction. However, current miRNA delivery methods, such as viral vectors or lipid formulations, present safety concerns for widespread use. We have developed an injectable thermo-responsive hydrogel functionalized with carbon nanotubes (RTG-CNT) for the delivery of miRNAs. The RTG-CNT hydrogel transitions from a liquid-solution to a gel-based matrix shortly after reaching body temperature allowing for a liquid-based delivery rapidly followed by a stable-gel miRNA localization. Moreover, this hydrogel has improved short-term (8-week) biocompatibility compared to viral and lipid approaches and it promotes two-fold more miRNA expression than lipid formulations. In this investigation, we propose to test the hypothesis that our novel RTG-CNT hydrogel is far superior delivery model of miRNAs to the heart, through increased biocompatibility, targeted delivery and higher miRNA expression when compared to viral and lipid approaches. We will address our hypothesis with a combination of cell biology and bioengineering by 1) Quantify the biocompatibility and the magnitude of improved localization of our RTG-CNT-miRNA delivery system over liposomal and viral vectors approaches, 2) Measure the improved efficiency of the RTG-CNT hydrogel as pro-regenerative miRNA delivery system vs. liposomal and viral vector deliveries in a mouse MI model and 3) Determine the potential of the RTG-CNT hydrogel to deliver anti-fibrotic miRNAs to further improve myocardial structure and rescue function in a mouse MI model. We believe that the RTG-CNT hydrogel will offer a more biocompatible and far more efficient miRNA delivery system than traditional approaches, that can be realistically translated into clinical applications.
摘要

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brisa Marisol Pena-Castellanos其他文献

Brisa Marisol Pena-Castellanos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brisa Marisol Pena-Castellanos', 18)}}的其他基金

Injectable Carbon Nanotube-Functionalized Hydrogel for miRNA Delivery
用于 miRNA 传递的可注射碳纳米管功能化水凝胶
  • 批准号:
    9977415
  • 财政年份:
    2020
  • 资助金额:
    $ 17.82万
  • 项目类别:
Injectable Carbon Nanotube-Functionalized Hydrogel for miRNA Delivery
用于 miRNA 传递的可注射碳纳米管功能化水凝胶
  • 批准号:
    10421055
  • 财政年份:
    2020
  • 资助金额:
    $ 17.82万
  • 项目类别:
Injectable Carbon Nanotube-Functionalized Hydrogel for miRNA Delivery
用于 miRNA 传递的可注射碳纳米管功能化水凝胶
  • 批准号:
    10175017
  • 财政年份:
    2020
  • 资助金额:
    $ 17.82万
  • 项目类别:

相似海外基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
  • 批准号:
    24K18450
  • 财政年份:
    2024
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
  • 批准号:
    LE240100129
  • 财政年份:
    2024
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Research Grant
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
  • 批准号:
    DP230100637
  • 财政年份:
    2023
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Discovery Projects
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
  • 批准号:
    23K04579
  • 财政年份:
    2023
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
  • 批准号:
    22KJ1464
  • 财政年份:
    2023
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
  • 批准号:
    2887441
  • 财政年份:
    2023
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了