Mechanisms of Antibody-Mediated Neutralization of Flavirus Infection
抗体介导的黄病毒感染中和机制
基本信息
- 批准号:7732610
- 负责人:
- 金额:$ 57.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AfricaAgeAntibodiesAntibody AffinityAntibody-Dependent EnhancementAsiaAustraliaAvidityBindingBiochemicalBirthCanadaCaribbean nativesCaribbean regionCellsCellular biologyChildClinicalComplementCryoelectron MicroscopyCulicidaeCytolysisDataDengue VirusDevelopmentDiseaseDisease OutbreaksDockingDomestic AnimalsEconomicsEncephalitisEpitopesEquus caballusEuropeExhibitsFc ReceptorFeverFlavivirusFlavivirus InfectionsFrequenciesGenerationsGoalsHumanImmune SeraImmune responseImmunodeficient MouseIn VitroIncidenceIndividualInfantInfectionInvestigationLaboratoriesLifeLinkMediatingMexicoMiddle EastModelingNeurologicNorth AmericaNumbersOutcomePassive ImmunizationPathway interactionsPlayRNA VirusesRangeRateRiskRoleSeroprevalencesSerotypingSiteStructureSurfaceUnited StatesVaccinationVaccinesViralViral ProteinsVirionVirusVirus DiseasesWest Nile FeverWest Nile virusbaseenv Gene Productsin vivomemberneutralizing antibodypathogenresearch studyresponsesecondary infectionstoichiometryvaccine development
项目摘要
Flaviviruses are a group of positive-stranded RNA viruses that have a global impact due to their widespread distribution and ability to cause disease in humans and economically important domesticated animals. Several members of this genus, such as dengue virus (DENV) and West Nile virus (WNV), are considered emerging or re-emerging pathogens because the incidence with which they encounter humans and cause disease is increasing each year at an alarming rate. There are more than 50 million humans infected by flaviviruses each year.
WNV is a mosquito-borne member of this genus and is the etiologic agent of West Nile encephalitis. WNV is endemic in parts of Africa, Australia, Europe, Asia, and the Middle East and has been responsible for periodic outbreaks of encephalitis in humans and horses. The introduction of WNV into North America in 1999 and its rapid spread across the United States into Canada, Mexico, and the Caribbean identifies this virus as an emerging pathogen of clinical and economic significance for the Western Hemisphere. While seroprevalence studies indicate that most WNV infections of humans are subclinical, clinically apparent infections range from a febrile illness (West Nile fever) to more severe and potentially fatal neurologic disease. Currently, no WNV vaccine has been approved for use in humans and treatment is supportive.
Cryo-electron microscopy studies reveal that the surface of flavivirus virions is covered by a highly ordered icosahedron composed of 180 envelope proteins. The generation of antibodies capable of binding to this array of viral proteins and blocking infection is a critical aspect of the immune response and an important goal of vaccine development. Passive immunization studies and experimental infections of immunodeficient mice demonstrate that antibody plays a significant role in protection from flavivirus infection. The importance of antibodies in vivo reflects their ability to directly neutralize virus infectivity, facilitate complement-mediated lysis of virions, and promote efficient viral clearance through Fc-receptor dependent pathways. However, antibodies generated in response to natural infection or vaccination also have the potential to enhance virus infection both in vitro and in vivo.
The neutralization potential of an antibody is governed by the number of sites on the virion available for binding (determined by epitope accessibility) and the strength of binding (antibody affinity/avidity). Using neutralizing antibodies that bind structurally distinct sites on the WNV or DENV virion, we are investigating the biochemical basis of potency with respect to how antibodies engage virus particles, and in what numbers. Our recent data suggest that neutralization of WNV requires engagement of individual virions with a stoichiometry that exceeds a required threshold. Our estimate for this threshold is roughly 30 antibodies.
Due to the quasi-icosahedral symmetry of the mature virion, not all epitopes on the flavivirus are equally accessible for antibody binding. Accessibility modulates antibody potency, as some determinants may not be exposed with a frequency that permits neutralization. Thus, antibodies that recognize such epitopes may neutralize poorly, or not at all, even at concentrations that permit saturation because too few antibodies can simultaneously dock on the virion. Paradoxically, many antibodies that recognize poorly exposed epitopes on the mature virion still show neutralizing activity in vitro and in vivo. How antibodies engage cryptic epitopes on virions with a stoichiometry that permits neutralization is difficult to reconcile using existing static models of virion structure and envelope organization. To investigate mechanisms that govern the potency of antibodies that target cryptic epitopes, we are investigating the dynamics that control epitope accessibility and neutralization potency.
Antibody-dependent enhancement of infection.
Paradoxically, antibodies may also play a role in enhancing virus infection and exacerbating disease. Antibody-dependent enhancement of infection (ADE) describes a dramatic increase in infection of Fc-receptor-bearing cells in the presence of sub-neutralizing concentrations of antibody or immune sera. The most direct link between ADE and the clinical outcome of DENV infection comes from investigations of the unusually large number of DHF cases following primary infection observed in infants during the first year of life. At birth, DENV-specific passively acquired antibodies are present at a relatively high concentration and exhibit neutralizing activity in vitro. However, as the child ages, degradation of maternally acquired antibody continues to levels that are no longer protective, do not neutralize virus, and enhance virus infection in vitro. The waning antibody titers of infants to levels that support ADE in vitro parallels the risk of DHF following primary DENV infection during the first year of life. In a broader context, antibodies elicited by primary infection with one serotype of DENV may bind related viruses introduced during secondary infection with reduced avidity, resulting in engagement of the virion with a stoichiometry that does not permit virus neutralization but can support ADE. The development of an immune response that elicits protective levels of neutralizing antibodies against all four serotypes of virus present in the vaccine is a key factor for reducing the risk of ADE. To facilitate this goal, our laboratory is investigating the biochemical determinants that comprise the enhancing character of an antibody, and studying the cell biology that underlies the mechanism of ADE.
黄病毒是一组正链RNA病毒,由于其广泛分布和在人类和经济上重要的家畜中引起疾病的能力而具有全球影响。该属的若干成员,如登革热病毒(DENV)和西尼罗河病毒(WNV),被认为是新发或再发病原体,因为它们与人类接触并引起疾病的发病率每年都在以惊人的速度增加。每年有超过5000万人感染黄病毒。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THEODORE C PIERSON其他文献
THEODORE C PIERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THEODORE C PIERSON', 18)}}的其他基金
Mechanisms of Antibody-Mediated Neutralization of Flavirus Infection
抗体介导的黄病毒感染中和机制
- 批准号:
7592311 - 财政年份:
- 资助金额:
$ 57.86万 - 项目类别:
Outcomes of the Interactions of Flaviviruses with Antibo
黄病毒与抗体相互作用的结果
- 批准号:
7196738 - 财政年份:
- 资助金额:
$ 57.86万 - 项目类别:
Outcomes of the Interactions of Flaviviruses with Antibo
黄病毒与抗体相互作用的结果
- 批准号:
7313452 - 财政年份:
- 资助金额:
$ 57.86万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Research Grant














{{item.name}}会员




