Statistical methods and designs for correlated outcome and covariate errors in studies of HIV/AIDS
HIV/艾滋病研究中相关结果和协变量误差的统计方法和设计
基本信息
- 批准号:10618614
- 负责人:
- 金额:$ 89.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-25 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAddressAfricaAfricanAgingBiometryClinic VisitsClinical DataCollaborationsCommunitiesComplexComputer softwareConfidence IntervalsDataData CollectionData SourcesDatabasesElectronic Health RecordEpidemiologyFatty LiverFibrosisFundingGrantHIVHIV/AIDSIncidenceInformaticsInternationalLatin AmericaLatin AmericanLearningLiver FibrosisLiver diseasesMachine LearningMeasurementMeasuresMethodologyMethodsModelingOutcomePaperParticipantPatientsPersonsPhaseProspective cohortRecording of previous eventsRecordsResearchResearch DesignResearch PersonnelResource-limited settingResourcesRisk FactorsSentinelStatistical MethodsStudy SubjectTechniquesTimeTranslatingTranslationsUnited States National Institutes of HealthValidationWeightWorkWritingcohortcomorbiditycost effectivedata harmonizationdata standardsdesignelectronic health dataflexibilityfrailtyimprovedinterestnovelopen source toolpatient subsetsprospectivesemiparametricsoftware developmenttoolvalidation studies
项目摘要
PROJECT SUMMARY/ASBTRACT
Electronic health record (EHR) and other routinely collected data are often used as cost-effective data sources
for HIV/AIDS research. These data sources, however, are known to be prone to errors, typically across
multiple variables, which can lead to biased study results and misleading conclusions. In addition, EHR data
sources often lack gold-standard measurements that are needed to clearly define the presence or absence of
co-morbidities (e.g., liver fibrosis). To address limitations of EHR data sources, researchers can validate or
collect additional data on a subsample of their patient records. By combining the rich, but error-prone EHR
data on all study subjects with the gold-standard / validated data collected on a subsample of subjects,
researchers can improve study estimates. Specifically, researchers can eliminate the bias of estimates had
they only used the EHR data, and they can improve the precision (e.g., narrower confidence intervals) of study
estimates had they only used the subsample with gold-standard / validated data. In earlier research, we
developed statistical methods and software to combine EHR data with validated sub-samples of data. We
developed optimal, multi-wave designs for targeting records for data validation. Importantly, we applied these
methods to multiple HIV studies using retrospective observational data from the International epidemiology
Databases to Evaluate AIDS (IeDEA). However, in our applications, we have encountered additional
challenges that have not yet been addressed. In particular, there is great potential in combining expensive,
prospectively collected, gold-standard data that are sparsely measured (e.g., once per year) on a sub-sample
of patients with EHR data that are collected much more frequently on a larger number of patients. We will
develop methods to handle this setting, and we will develop statistical designs to better select which
participants should be approached for prospective data collection and which patient records should be
validated. We will also develop statistical methods to address other challenges encountered with using EHR
data, including how to incorporate validation data into studies when inclusion in the study is error-prone, and
methods to address more complex types of data (e.g., interval censored data), for which there are a lack of
techniques to handle error-prone data. Our methods and designs will focus on extensions of multiple
imputation, maximum likelihood, and generalized raking techniques. Open source tools and tutorials will be
developed to help researchers to implement these novel methods and study designs. The methods and
designs will be applied to data from the IeDEA network to estimate the incidence of and risk factors for liver
fibrosis/steatosis and frailty among people living with HIV in East Africa and Latin America.
项目概要/ASBTRACT
电子健康记录(EHR)和其他常规收集的数据通常被用作具有成本效益的数据源
用于艾滋病研究。然而,这些数据源通常在跨
多个变量,这可能导致有偏见的研究结果和误导性的结论。此外,EHR数据
来源往往缺乏金标准的测量,需要明确界定的存在或不存在的
共病(例如,肝纤维化)。为了解决EHR数据源的局限性,研究人员可以验证或
收集他们病历子样本的额外数据。通过结合丰富的,但容易出错的EHR
所有研究受试者的数据以及从受试者子样本中收集的金标准/验证数据,
研究人员可以改进研究估计。具体来说,研究人员可以消除估计的偏差,
他们只使用EHR数据,他们可以提高精度(例如,较窄的置信区间)
如果他们只使用具有黄金标准/验证数据的子样本,估计数将减少。在早期的研究中,我们
开发了统计方法和软件,将联合收割机EHR数据与经过验证的子样本数据相结合。我们
开发了最佳的多波设计,用于数据验证的目标记录。重要的是,我们应用了这些
使用国际流行病学回顾性观察数据的多项HIV研究方法
艾滋病评估数据库。然而,在我们的应用程序中,我们遇到了额外的
尚未解决的挑战。特别是,将昂贵的,
前瞻性收集的、稀疏测量的黄金标准数据(例如,每年一次)
患者的EHR数据,收集更频繁的大量患者。我们将
开发处理这种情况的方法,我们将开发统计设计,以更好地选择
参与者应接触前瞻性数据收集和患者记录应
验证.我们还将开发统计方法来解决使用EHR遇到的其他挑战
数据,包括当纳入研究时容易出错时如何将验证数据纳入研究,以及
用于处理更复杂类型的数据的方法(例如,区间删失数据),其中缺乏
处理易出错数据的技术。我们的方法和设计将集中在多个
插补、最大似然和广义搜索技术。开源工具和教程将
帮助研究人员实施这些新方法和研究设计。的方法和
设计将应用于来自IeDEA网络的数据,以估计肝脏疾病的发病率和风险因素。
在东非和拉丁美洲,艾滋病病毒感染者的纤维化/脂肪变性和虚弱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pamela A Shaw其他文献
An Augmented Likelihood Approach for the Discrete Proportional Hazards Model Using Auxiliary and Validated Outcome Data -- with Application to the HCHS/SOL Study
使用辅助和经过验证的结果数据的离散比例危险模型的增强似然方法 - 及其在 HCHS/SOL 研究中的应用
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lillian A Boe;Pamela A Shaw - 通讯作者:
Pamela A Shaw
Early Termination of Clinical Trials for Futility - Considerations for a Data and Safety Monitoring Board.
因无效而提前终止临床试验 - 数据和安全监测委员会的考虑因素。
- DOI:
10.1056/evidctw2100020 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
S. Ellenberg;Pamela A Shaw - 通讯作者:
Pamela A Shaw
Practical considerations for sandwich variance estimation in two-stage regression settings.
两阶段回归设置中三明治方差估计的实际考虑因素。
- DOI:
10.1093/aje/kwad234 - 发表时间:
2022 - 期刊:
- 影响因子:5
- 作者:
Lillian A Boe;T. Lumley;Pamela A Shaw - 通讯作者:
Pamela A Shaw
The effects of the Multicultural Healthy Diet on cognitive decline and Alzheimer’s disease risk: a phase II randomized controlled trial in middle-aged adults
- DOI:
10.1016/j.ajcnut.2025.05.011 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.900
- 作者:
Yasmin Mossavar-Rahmani;Noorie Hyun;Jonathan G Hakun;Mindy J Katz;Jelena M Pavlovic;Henrik Zetterberg;Zheng Wang;Jasper B Yang;Judith Wylie-Rosett;James R Hebert;Martin J Sliwinski;Pamela A Shaw - 通讯作者:
Pamela A Shaw
A RANDOMIZED, PLACEBO-CONTROLLED TRIAL OF REPEATED IV ANTIBIOTIC THERAPY FOR LYME ENCEPHALOPATHY PROLONGED LYME DISEASE TREATMENT: ENOUGH IS ENOUGH
重复静脉注射抗生素治疗莱姆病脑病的随机、安慰剂对照试验 长期莱姆病治疗:受够了
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:9.9
- 作者:
A. Marques;Pamela A Shaw;C. Schmid;A. Steere;R. Kaplan;A. Hassett;Eugene D. Shapiro;G. Wormser - 通讯作者:
G. Wormser
Pamela A Shaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pamela A Shaw', 18)}}的其他基金
Statistical methods for correlated outcome and covariate errors in studies of HIV/AIDS
HIV/AIDS 研究中相关结果和协变量误差的统计方法
- 批准号:
10330582 - 财政年份:2019
- 资助金额:
$ 89.35万 - 项目类别:
相似海外基金
A mixed methods approach to address multi-level barriers to care for migratory men living with HIV in South Africa
采用混合方法解决照顾南非艾滋病毒携带者移民男性的多层次障碍
- 批准号:
10403224 - 财政年份:2022
- 资助金额:
$ 89.35万 - 项目类别:
Using the EPIC model to build transdisciplinary communities of practice that effectively address urban resilience in Africa and Asia
使用 EPIC 模型建立跨学科实践社区,有效解决非洲和亚洲的城市复原力问题
- 批准号:
2103692 - 财政年份:2022
- 资助金额:
$ 89.35万 - 项目类别:
Standard Grant
A mixed methods approach to address multi-level barriers to care for migratory men living with HIV in South Africa
采用混合方法解决照顾南非艾滋病毒携带者移民男性的多层次障碍
- 批准号:
10689689 - 财政年份:2022
- 资助金额:
$ 89.35万 - 项目类别:
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/1 - 财政年份:2021
- 资助金额:
$ 89.35万 - 项目类别:
Research Grant
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/2 - 财政年份:2021
- 资助金额:
$ 89.35万 - 项目类别:
Research Grant
An implementation science approach to address multi-level barriers to cancer screening among women living with HIV in South Africa
一种实施科学方法,以解决南非艾滋病毒感染妇女癌症筛查的多层次障碍
- 批准号:
10242935 - 财政年份:2020
- 资助金额:
$ 89.35万 - 项目类别:
A Multisectoral Strategy to Address Persistent Drivers of the HIV Epidemic in East Africa
解决东非艾滋病毒流行的持续驱动因素的多部门战略
- 批准号:
10267216 - 财政年份:2020
- 资助金额:
$ 89.35万 - 项目类别:
A Multisectoral Strategy to Address Persistent Drivers of the HIV Epidemic in East Africa
解决东非艾滋病毒流行的持续驱动因素的多部门战略
- 批准号:
10085144 - 财政年份:2020
- 资助金额:
$ 89.35万 - 项目类别:
A Multisectoral Strategy to Address Persistent Drivers of the HIV Epidemic in East Africa
解决东非艾滋病毒流行的持续驱动因素的多部门战略
- 批准号:
10438844 - 财政年份:2020
- 资助金额:
$ 89.35万 - 项目类别:
Teaching empowerment: Grass-roots educators' strategies to address gender equity in the context of the HIV epidemic in South Africa
教学赋权:基层教育工作者在南非艾滋病毒流行背景下解决性别平等问题的战略
- 批准号:
218055 - 财政年份:2010
- 资助金额:
$ 89.35万 - 项目类别:
Studentship Programs