RNAi and Epigenetic Control of Higher-Order Chromatin Assembly
高阶染色质组装的 RNAi 和表观遗传控制
基本信息
- 批准号:7733067
- 负责人:
- 金额:$ 211.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Amino AcidsBindingCell physiologyChromatinChromatin ModelingChromosome StructuresComplexDeacetylaseDefectDepthDevelopmentDiseaseEpigenetic ProcessEuchromatinEukaryotaEukaryotic CellEventEvolutionFamilyFission YeastFungal GenomeGene ExpressionGene Expression ProfileGenesGenomeGenomicsHeterochromatinHigher Order Chromatin StructureHistone CodeHistone DeacetylationHistone H3HistonesHomologous GeneHuman BiologyLaboratoriesLarge-Scale SequencingLightLinkLocalizedLocationLysineMaintenanceMalignant NeoplasmsMammalsMapsMeasuresMediatingMedical SurveillanceMethylationMethyltransferaseModelingModificationMolecularNucleosomesPathway interactionsPatternPlayProcessProteinsRNARNA InterferenceRangeRecruitment ActivityRegulationResearchResolutionRetroelementsRetrotransposonRoleSiteSmall Interfering RNAStructureTailTherapeuticTranscriptTransposaseWorkcancer therapycentromere autoantigen 80Kgenetic regulatory proteinhuman diseaseinsightnovelpreventpromoter
项目摘要
Research in our laboratory is focused on the epigenetic control of higher-order chromatin assembly. The dynamic regulation of higher-order chromosome structure governs diverse cellular processes ranging from stable inheritance of gene expression patterns to other aspects of global chromosome structure essential for preserving genomic integrity. Our earlier studies revealed sequence of molecular events leading to the assembly of heterochromatic structures in the fission yeast Schizosaccharomyces pombe. We found that covalent modifications of histone tails by deacetylase and methyltransferase activities act in concert to establish the histone code essential for the assembly of heterochromatic structures. Moreover, we showed that distinct site-specific histone H3 methylation patterns dictate the organization of chromosomes into discrete structural and functional domains. Histone H3 methylated at lysine 9 is strictly localized to silent heterochromatic regions whereas H3 methylated at lysine 4, only a few amino acids away, is specific to the surrounding active euchromatic regions. We have continued to focus on the role of histone modifications and the factors that recognize specific histone modifications patterns (such as a chromodomain protein Swi6 that specifically binds histone H3 methylated at lysine 9) in the assembly of higher-order chromatin structures and have made significant progress in understanding the mechanism of higher-order chromatin assembly. More importantly, we provided evidence showing that RNA interference (RNAi), whereby double-stranded RNAs silence cognate genes, plays a critical role in targeting of heterochromatin complexes to specific locations in the genome. Our recent work has led to discovery of a self-enforcing loop mechanism though which RNAi machinery operates as a stable component of the heterochromatic domains (via tethering of RNAi complexes to heterochromatin marks) to destroy repeat transcripts that escape heterochromatin-mediated transcriptional silencing. In this loop mechanism, the processing of transcripts by RNAi machinery generate small interfering RNAs (siRNAs) that are utilized for further targeting of heterochromatin complexes, so the mechanism continues. In a comprehensive study, we have also developed a high-resolution map of the heterochromatin and euchromatin distribution across the entire fission yeast genome. These analyses together with mapping of RNAi components and large scale sequencing of siRNAs assocaited with an RNAi effector complex involved in heterochromatic silencing have yielded novel insights into the epigenetic profile of this model eukaryotic genome. Our work led to realization the heterochromatin serves as a dynamic platform of the genome involved in recruitment of diverse regulatory proteins (effectors) implicated in different chromosomal processes. Among other factors, these effectors include factors involved in deacetylation of histones and nucleosome remodeling proteins (such as SHREC complex described recently by our lab), which facilitate assembly of higher-order chromatin structures. The link between RNAi, heterochromatin, and chromatin-modifying factors is conserved in higher eukaryotes including mammals and has broad implications for human biology and disease including cancer. We have also uncovered a novel genome surveillance mechanism for retrotransposons by a family of transposase-derived CENP-B homologs. Retrotransposons are capable of exerting diverse effects on their hosts, profoundly influencing the organization, integrity and evolution of the host genome, and the host transcriptome. We discovered that CENP-Bs localize at and recruit histone deacetylases to silence retrotransposons. CENP-Bs also repress retrotransposon relics scattered throughout the fission yeast genome and often located near gene promoters to exert influence on expression of genes. Surprisingly, retroelements dispersed throughout the genome are clustered into specialized bodies, the organization of which depends on CENP-Bs. CENP-B-mediated surveillance is proactive, capable of preventing an extinct retrotransposon from reentering the host genome. These results reveal a likely ancient retrotransposon surveillance pathway important for host genome organization and maintenance of genomic integrity.
我们实验室的研究重点是高阶染色质组装的表观遗传控制。高阶染色体结构的动态调节控制着多种细胞过程,从基因表达模式的稳定遗传到保持基因组完整性所必需的全局染色体结构的其他方面。我们早期的研究揭示了导致裂殖酵母裂殖酵母异染色质结构组装的分子事件序列。我们发现,脱乙酰酶和甲基转移酶活性对组蛋白尾部的共价修饰协同作用,建立了异染色质结构组装所必需的组蛋白密码。此外,我们发现不同的位点特异性组蛋白 H3 甲基化模式决定染色体组织成离散的结构和功能域。 在第 9 位赖氨酸甲基化的组蛋白 H3 严格定位于沉默异染色质区域,而在仅几个氨基酸之外的第 4 位赖氨酸甲基化的 H3 则特定于周围活跃的常染色质区域。我们持续关注组蛋白修饰和识别特定组蛋白修饰模式的因素(例如特异性结合赖氨酸 9 甲基化的组蛋白 H3 的染色质结构域蛋白 Swi6)在高阶染色质结构组装中的作用,并在理解高阶染色质组装机制方面取得了重大进展。更重要的是,我们提供的证据表明,RNA 干扰 (RNAi),即双链 RNA 沉默同源基因,在将异染色质复合物靶向基因组中的特定位置方面发挥着关键作用。 我们最近的工作发现了一种自我执行的循环机制,通过该机制,RNAi 机制作为异染色质结构域的稳定组成部分(通过将 RNAi 复合物束缚到异染色质标记)来破坏逃避异染色质介导的转录沉默的重复转录本。在这种循环机制中,RNAi 机器对转录本的处理会产生小干扰 RNA (siRNA),这些小干扰 RNA 可用于进一步靶向异染色质复合物,因此该机制仍在继续。在一项综合研究中,我们还开发了整个裂殖酵母基因组中异染色质和常染色质分布的高分辨率图谱。这些分析连同 RNAi 成分的图谱和与参与异染色质沉默的 RNAi 效应复合物相关的 siRNA 的大规模测序,已经对该模型真核基因组的表观遗传谱产生了新的见解。我们的工作使我们认识到异染色质作为基因组的动态平台,参与不同染色体过程中涉及的多种调节蛋白(效应物)的招募。除其他因素外,这些效应物包括参与组蛋白和核小体重塑蛋白脱乙酰化的因素(例如我们实验室最近描述的 SHREC 复合物),这些因素促进高阶染色质结构的组装。 RNAi、异染色质和染色质修饰因子之间的联系在包括哺乳动物在内的高等真核生物中是保守的,并且对人类生物学和包括癌症在内的疾病具有广泛的影响。我们还通过转座酶衍生的 CENP-B 同源物家族发现了一种新的逆转录转座子基因组监视机制。逆转录转座子能够对其宿主产生多种影响,深刻影响宿主基因组和宿主转录组的组织、完整性和进化。我们发现 CENP-B 定位并招募组蛋白脱乙酰酶来沉默逆转录转座子。 CENP-B 还抑制分散在裂殖酵母基因组中的逆转录转座子遗迹,这些遗迹通常位于基因启动子附近,以对基因表达产生影响。令人惊讶的是,分散在整个基因组中的逆转录元件聚集成专门的体,其组织取决于 CENP-B。 CENP-B 介导的监视是主动的,能够防止灭绝的逆转录转座子重新进入宿主基因组。这些结果揭示了一个可能古老的逆转录转座子监视途径,对于宿主基因组组织和基因组完整性的维护很重要。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biochemical interactions between proteins and mat1 cis-acting sequences required for imprinting in fission yeast.
裂殖酵母中印记所需的蛋白质和 mat1 顺式作用序列之间的生化相互作用。
- DOI:10.1128/mcb.24.22.9813-9822.2004
- 发表时间:2004
- 期刊:
- 影响因子:5.3
- 作者:Lee,Bum-Soo;Grewal,ShivIS;Klar,AmarJS
- 通讯作者:Klar,AmarJS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
shivinder s grewal其他文献
shivinder s grewal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('shivinder s grewal', 18)}}的其他基金
Roles of Chromatin-modifying Factors in Epigenetic Control of the Genome
染色质修饰因子在基因组表观遗传控制中的作用
- 批准号:
8938011 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
Roles of Chromatin-modifying Factors in Epigenetic Control of the Genome
染色质修饰因子在基因组表观遗传控制中的作用
- 批准号:
9153821 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
RNAi and Epigenetic Control of Higher-Order Chromatin Assembly
高阶染色质组装的 RNAi 和表观遗传控制
- 批准号:
10926034 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
Roles of Chromatin-modifying Factors in Epigenetic Control of the Genome
染色质修饰因子在基因组表观遗传控制中的作用
- 批准号:
10262265 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
RNAi and Epigenetic Control of Higher-Order Chromatin Assembly
高阶染色质组装的 RNAi 和表观遗传控制
- 批准号:
10262108 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
Roles of Chromatin-modifying Factors in Epigenetic Control of the Genome
染色质修饰因子在基因组表观遗传控制中的作用
- 批准号:
9343841 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
RNAi and Epigenetic Control of Higher-Order Chromatin Assembly
高阶染色质组装的 RNAi 和表观遗传控制
- 批准号:
9343642 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
RNAi and Epigenetic Control of Higher-Order Chromatin Assembly
高阶染色质组装的 RNAi 和表观遗传控制
- 批准号:
7965390 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
Roles of Chromatin-modifying Factors in Epigenetic Control of the Genome
染色质修饰因子在基因组表观遗传控制中的作用
- 批准号:
8349397 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
RNAi and Epigenetic Control of Higher-Order Chromatin Assembly
高阶染色质组装的 RNAi 和表观遗传控制
- 批准号:
8349035 - 财政年份:
- 资助金额:
$ 211.72万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 211.72万 - 项目类别:
Discovery Projects