Lactate transport and pH-regulation in the human RPE

人类 RPE 中的乳酸转运和 pH 调节

基本信息

  • 批准号:
    7734651
  • 负责人:
  • 金额:
    $ 28.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The inner retina releases a lot of lactate, consistent with the high lactate concentration (3.8 - 13 mM) at the SRS even in light-adapted eyes. Lactate is released upon dark-adaptationa result of (1) an increased glucose metabolism at the outer retina, (2) the reduced retinal oxygen level in the dark adapted eye and (3) glutamate-induced lactate release from Mller cells. To prevent lactate accumulation at the SRS, the RPE expresses lactate transporters, of the MCT family of monocarboxylate transporters, at the apical (MCT1) and basolateral membrane (MCT3 and MCT4). To demonstrate the importance of lactate transport in the eye, the same group also showed that mice lacking MCT1, MCT3, and MCT4 expression rapidly lose photoreceptor cells. Lactate transport was also shown to increase fluid transport across the porcine RPE, and in the bullfrog, possibly by interacting with other ion-transporters. A recent study by Becker and colleagues demonstrated that MCT1 activity increases when the electrogenic Na/HCO3 co-transporter (NBC1) is co-expressed with MCT1. In addition, MCT1 activity is enhanced by carbonic anhydrase activity in muscle cells. Therefore, a similar functional protein-complex may exist in vivo in the RPE. Our study aims to determine if MCT mediated lactate-transport involve CAs, Na/HCO3 co-transporter or other ion-transporters in the RPE by monitoring intracellular pH, transepithelial potential (TEP), and total tissue resistance (Rt). Lactate transport across the apical membrane of the RPE is a two phase process; when lactate is perfused onto the apical membrane, it causes a fast intracellular acidification (phase 1), followed by a slow alkalinization (phase 2). These pH-responses are mediated by monocarboxylate transporters because perfusing lactate, pyruvate, propionate, or acetate to the apical bath caused similar pH-responses. We were also able to inhibit the acidification phase (phase 1) with MCT1-inhibitors: niflumic acid and pCMBS. The recovery phase (phase 2) was blocked by amiloride and ouabain, indicating that proton-efflux via the Na/H exchanger mediates the recovery phase. Perfusing lactate onto the apical membrane causes a TEP-rise due to an increased Cl-efflux from the basolateral membrane of the RPE. We confirm this in the cultured hfRPE by showing that the apical lactate-induced TEP-response was weakened by Cl-channel inhibitor (DIDS) at the basolateral membrane. In the RPE, vacuolar V-type H+ATPases are localized at the apical membrane and is actively pumping protons out of the RPE; this was evidenced by the strong intracellular acidification upon apical membrane exposure to H+ATPase inhibitors (phloretin, NBD-Cl, DCCD, and NEM). Thus the H+ATPase may mediate the pH-recovery phase (phase 2) of the lactate-response, and at the same time causes a TEP-rise. In that regard, our experiments show that phloretin partially inhibited the pH-recovery phase and the TEP-rise. A DIDS-inhibitable Na/2HCO3 co-transporter was detected at the apical membrane of the cultured hfRPE, thus corroborating earlier experiments performed in frog and bovine RPE. Our experiments show that blocking pNBC1 activity (with DIDS) did not affect H/Lac entry via MCT1, suggesting that HCO3-influx via pNBC1 was buffering H/Lac co-transport activity and that MCT1 transport activity was independent of pNBC1 activity. Since interactions between MCT1 and the cytosolic CA-II have been reported in muscle cells, we test this protein interaction in the RPE by inhibiting CA activity with dorzolamide. In the presence of dorzolamide and CO2/HCO3-rich buffer, we show that the apical lactate acidification was amplified. This indicates that H/Lac transport via MCT1 was not inhibited by dorzolamide, instead dorzolamide inhibited HCO3-entry (via pNBC1) that was buffering H/Lac transport, thus a stronger acidification was observed. Lactate transport at the basolateral membrane is mediated by MCT3 and MCT4 in cultured hfRPE cells. Interestingly, perfusing lactate to the basolateral membrane caused a slow intracellular alkalinization but a fast TEP-drop. Perfusing any monocarboxylates (i.e., lactate, acetate, pyruvate, and propionate) to the basal bath caused slow intracellular alkalinization, thus confirming that the alkalinization was a two part process: (1) acidification mediated by MCT3 H/Lac co-transport that is overwhelmed by the (2) alkalinization caused by proton efflux from MCT1, Na/H exchanger, or the H+ATPase. Blocking proton efflux from the Na/H exchanger at the apical membrane with amiloride did not reverse basal lactate induced alkalinization. However, in the presence of H+ATPase inhibitors (pCMBS, phloretin, or NBD-Cl) at the apical bath, perfusing lactate to the basal membrane caused acidification. Therefore our data suggests that proton-flux out of the apical membrane via H+ATPase and H/Lac transport out of the RPE via MCT1 caused the 20 mM basal lactate induced alkalinization.
内层视网膜释放大量的乳酸盐,这与SRS处的高乳酸盐浓度(3.8 - 13 mM)一致,即使在光适应的眼睛中也是如此。 乳酸在暗适应时释放,这是由于(1)外层视网膜的葡萄糖代谢增加,(2)暗适应眼中视网膜氧水平降低和(3)谷氨酸诱导的Mller细胞的乳酸释放。 为了防止SRS处的乳酸蓄积,RPE在顶膜(MCT 1)和基底外侧膜(MCT 3和MCT 4)处表达单羧酸转运蛋白的MCT家族的乳酸转运蛋白。 为了证明乳酸转运在眼睛中的重要性,同一组还显示缺乏MCT 1,MCT 3和MCT 4表达的小鼠迅速失去感光细胞。 乳酸转运也被证明可以增加猪RPE和牛蛙中的液体转运,可能是通过与其他离子转运蛋白相互作用。 Becker及其同事最近的一项研究表明,当产电Na/HCO 3共转运蛋白(NBC 1)与MCT 1共表达时,MCT 1活性增加。 此外,肌肉细胞中的碳酸酐酶活性可增强MCT 1活性。 因此,在体内RPE中可能存在类似的功能性蛋白质复合物。 我们的研究旨在通过监测细胞内pH值、跨上皮电位(TEP)和总组织电阻(Rt)来确定MCT介导的乳酸转运是否涉及RPE中的CA、Na/HCO 3协同转运蛋白或其他离子转运蛋白。 乳酸盐转运穿过RPE的顶膜是一个两阶段的过程;当乳酸盐灌注到顶膜上时,它引起快速的细胞内酸化(阶段1),然后是缓慢的碱化(阶段2)。 这些pH反应是由单羧酸转运蛋白介导的,因为灌注乳酸盐,丙酮酸盐,丙酸盐,或乙酸盐的顶端浴引起类似的pH反应。 我们还能够用MCT 1抑制剂:尼氟灭酸和pCMBS抑制酸化阶段(阶段1)。 阿米洛利和哇巴因阻断恢复期(第2期),表明质子流出通过Na/H交换介导的恢复期。 将乳酸灌注到顶膜上导致由于来自RPE的基底外侧膜的Cl-流出增加而引起的TEP升高。 我们证实了这一点,在培养的hfRPE显示顶端乳酸诱导的TEP反应被削弱的Cl-通道抑制剂(DIDS)在基底外侧膜。 在RPE中,液泡V型H+ ATP酶位于顶膜处,并积极地将质子泵出RPE;这通过顶膜暴露于H+ ATP酶抑制剂(根皮素、NBD-Cl、DCCD和NEM)后的强细胞内酸化来证明。 因此,H+ ATP酶可能介导乳酸盐反应的pH恢复阶段(阶段2),同时引起TEP升高。 在这方面,我们的实验表明,根皮素部分抑制pH恢复阶段和TEP上升。 在培养的hfRPE的顶膜处检测到DIDS可降解的Na/2 HCO 3共转运蛋白,从而证实了在青蛙和牛RPE中进行的早期实验。 我们的实验表明,阻断pNBC 1活性(用DIDS)并不影响H/Lac通过MCT 1的进入,这表明通过pNBC 1的HCO 3-内流缓冲H/Lac共转运活性,并且MCT 1转运活性不依赖于pNBC 1活性。 由于在肌细胞中已经报道了MCT 1和胞质CA-II之间的相互作用,我们通过用多佐胺抑制CA活性来检测RPE中的这种蛋白质相互作用。 在多佐胺和CO2/HCO 3丰富的缓冲液的存在下,我们表明,顶端乳酸酸化放大。 这表明多佐胺不抑制通过MCT 1的H/Lac转运,而是抑制缓冲H/Lac转运的HCO 3-进入(通过pNBC 1),因此观察到更强的酸化。 在培养的hfRPE细胞中,基底外侧膜处的乳酸转运由MCT 3和MCT 4介导。 有趣的是,乳酸灌注到基底外侧膜引起缓慢的细胞内碱化,但快速的TEP下降。 灌注任何单羧酸盐(即,乳酸盐、乙酸盐、丙酮酸盐和丙酸盐)添加到基础浴中引起缓慢的细胞内碱化,从而证实碱化是两部分过程:(1)由MCT 3 H/Lac共转运介导的酸化,其被(2)由来自MCT 1、Na/H交换剂或H+ ATP酶的质子流出引起的碱化所压倒。 用阿米洛利阻断Na/H交换器在顶膜的质子流出并不能逆转基础乳酸诱导的碱化。 然而,在H+ ATP酶抑制剂(pCMBS,根皮素,或NBD-Cl)的存在下,在顶端浴,灌注乳酸盐的基膜引起酸化。 因此,我们的数据表明,质子通过H+ ATP酶流出顶端膜和H/Lac通过MCT 1运输出RPE引起20 mM基础乳酸诱导的碱化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheldon Miller其他文献

Sheldon Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheldon Miller', 18)}}的其他基金

The treatment of uveitic cystoid macular edema with topical Interferon gamma
局部干扰素γ治疗葡萄膜炎性黄斑囊样水肿
  • 批准号:
    7968430
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:
Human Retinal Pigment Epithelial Cell Cultures: Physiology & Fluid Transport
人视网膜色素上皮细胞培养:生理学
  • 批准号:
    7968352
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:
Biological function microRNAs enriched in RPE: in vitro and in vivo models
RPE 中富集的生物学功能 microRNA:体外和体内模型
  • 批准号:
    7968404
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:
Protective effects of neurotrophic factors on RPE physiology
神经营养因子对 RPE 生理的保护作用
  • 批准号:
    7968410
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:
AG13764 and AG13711 Reverses VEGF-Induced Choroidal Neovascularization in Rat Eye
AG13764 和 AG13711 逆转 VEGF 诱导的大鼠眼脉络膜新生血管形成
  • 批准号:
    7968355
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:
Animal models of eye diseases
眼病动物模型
  • 批准号:
    8339786
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:
Human Retinal Pigment Epithelial Physiology
人类视网膜色素上皮生理学
  • 批准号:
    8339776
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:
NEI New Space Activation & Commissioning
NEI新空间激活
  • 批准号:
    7970430
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:
pH-dependent ion- transport mechanism in the hfRPE
hfRPE 中 pH 依赖性离子传输机制
  • 批准号:
    8149180
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:
Central serous chorioretinopathy mouse model
中心性浆液性脉络膜视网膜病变小鼠模型
  • 批准号:
    8149202
  • 财政年份:
  • 资助金额:
    $ 28.34万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了